
CONTENTS

BLOCK I: - FUNDAMENTALS OF DBMS & FILE ORGANISATION

UNIT I – DATABASE MANAGEMENT SYSTEM CONCEPTS 1 - 11
1.1. Introduction

1.2. Objective

1.3. Database Management System Concepts

1.3.1. Significance of Database

1.3.2. Database System Applications

1.3.3. Data Independence

1.3.4. Data Modeling for a Database

1.4. Entities and their Attributes

1.4.1. Entities

 1.4.2. Attributes

1.4.3. Relationships and Relationships Types

1.5. Advantages and Disadvantages of Database Management System

1.6. DBMS Vs RDBMS

1.7. Let Us Sum Up

1.8. Unit – End Exercises

1.9. Answer to Check Your Progress

UNIT II – DATABASE SYSTEM ARCHITECTURE 12 - 36
2.1. Introduction

2.2. Objective

2.3. Three Level Architecture of DBMS

2.3.1. The External Level or Subschema

2.3.2. The Conceptual Level or Conceptual Schema

2.3.3. The Internal Level or Physical Schema

2.4. Mapping

2.5. MySQL Architecture

2.6. SQL Server 2000 Architecture

2.7. Oracle Architecture

2.8. Database Management System Facilities

2.9. Data Definition Language

2.10. Data Manipulation Language

2.11. Database Management System Structure

2.12. Database Manager

2.13. Database Administrator

2.14. Data Dictionary

2.15. Distributed Processing

2.16. Information and Communication Technology System (ICT)

2.17. Client / Server Architecture

2.18. Let Us Sum Up

2.19. Unit – End Exercises

2.20. Answer to Check Your Progress

UNIT III – DATABASE MODELS AND IMPLEMENTATION 37 - 50
3.1. Introduction

3.2. Objective

3.3. Data Model and Types of Data

3.3.1. Relational Data Model

3.3.2. Hierarchical Model

3.3.3. Network Data Model

3.3.4. Object / Relational Model

3.3.5. Object-Oriented Model

3.3.6. Entity-Relationship Model

 3.3.6.1. Modeling using E-R Diagrams

 3.3.6.2. Notation used in E-R Model

3.3.7. Relationships and relationship Types

3.3.8. Associative database Model

3.4. Let Us Sum Up

3.5. Unit – End Exercises

3.6. Answer to Check Your Progress

UNIT IV – FILE ORGANIZATION FOR CONVENTIONAL DBMS 51 - 63
4.1. Introduction

4.2. Objective

4.3. Storage Devices and its Characteristics

4.3.1. Magnetic Disks

4.3.2. Physical Characteristics of Disks

4.3.3. Performance Measures of Disks

4.3.4. Optimization of Disk-Block Access

4.4. File Organization

4.4.1. Fixed-Length Records

4.4.2. Variable-Length Records

4.4.3. Organization of records in files

4.4.4. Sequential file Organization

4.4.5. Indexed Sequential Access Method (ISAM)

4.4.6. Virtual Storage Access Method (VSAM)

4.5. Let Us Sum Up

4.6. Unit – End Exercises

4.7. Answer to Check Your Progress

BLOCK II: - BASICS OF SQL & RELATION ALGEBRA 64 - 72

UNIT V – RDBMS
5.1. Introduction

5.2. Objective

5.3. An informal look at the relational model

5.3.1. Relational Database Management System

5.3.2. RDBMS Properties

5.3.3. The Entity-Relationship Model

5.4. Overview of Relational Query Optimization

5.4.1. System Catalog in a Relational DBMS

5.4.2. Information stored in the System Catalog

5.4.3. How Catalogs are Stored

5.5. Let Us Sum Up

5.6. Unit – End Exercises

5.7. Answer to Check Your Progress

UNIT VI – SQL – I 73 - 85
6.1. Introduction

6.2. Objective

6.3. Categories of SQL Commands

6.3.1. Data Definition

6.3.2. Data Manipulation Statements

6.3.3. SELECT

6.3.4. The Basic Form

6.3.5. Sub Queries

6.4. Functions

6.5. GROUP BY Feature

6.6. Updating the Database

6.7. Data Definition Facilities

6.8. Let Us Sum Up

6.9. Unit – End Exercises

6.10. Answer to Check Your Progress

UNIT VII – SQL – II 86 - 97
7.1. Introduction

7.2. Objective

7.3. Views

7.4. Embedded SQL*

7.5. Declaring Variables and Exceptions

7.6. Embedding SQL Statements

7.7. Transaction Processing

7.8. Consistency and Isolation

7.9. Atomicity and Durability

7.10. Let Us Sum Up

7.11. Unit – End Exercises

7.12. Answer to Check Your Progress

UNIT VIII – RELATIONAL ALGEBRA 98 - 109
8.1. Introduction

8.2. Objective

8.3. Basic Operations

8.3.1. Union (U)

8.3.2. Difference (-)

8.3.3. Intersection

8.3.4. Cartesian product (x)

8.4. Additional Relational Algebra Operations

8.4.1. Projection

8.4.2. Selection

8.4.3. JOIN

8.4.4. Division

8.5. Let Us Sum Up

8.6. Unit – End Exercises

8.7. Answer to Check Your Progress

BLOCK III: - NORMALIZATION CONCEPTS & QUERY PROCESSING

UNIT IX – RELATIONAL CALCULUS 110 - 116
9.1. Introduction

9.2. Objective

9.3. Tuple Relational Calculus

9.3.1. Semantics of TRC Queries

9.3.2. Examples of TRC Queries

9.6. Domain Relational Calculus

9.7. Relational ALGEBRA Vs Relational CALCULUS

9.8. Let Us Sum Up

9.9. Unit – End Exercises

9.10. Answer to Check Your Progress

UNIT X – NORMALIZATION 117 - 129
10.1. Introduction

10.2. Objective

10.3. Functional Dependency
10.4. Anomalies in a database

10.5. Properties of Normalized Relations

10.6. First Normalization

10.7. Second Normal Form Relation

10.8. Third Normal Form

10.9. Boyce-Codd Normal Form (BCNF)

10.10. Fourth and Fifth Normal Form

10.11. Let Us Sum Up

10.12. Unit – End Exercises

10.13. Answer to Check Your Progress

UNIT XI – QUERY PROCESSING AND OPTIMIZATION 130 - 150
11.1. Introduction

11.2. Objective

11.3. Query Interpretation

11.4. Equivalence of expressions

11.5. Algorithm for Executing Query Operations

11.6. External Sorting

11.7. Select Operation

11.8. Join Operation

11.9. PROJECT and set Operation

11.10. Aggregate Operations

11.11. Outer Join

11.12. Heuristics in Query Optimization

11.13. Semantic Query Optimization

11.14. Converting Query Tree to Query Evaluation Plan

11.15. Cost Estimates in Query Optimization

11.15.1. Measure of Query Cost

11.15.2. Catalog information for cost estimation of queries

11.16. Join Strategies for Parallel Processing

11.17. Parallel Join

11.18. Pipelined multi way join

11.19. Physical organization

11.20. Let Us Sum Up

11.21. Unit – End Exercises

11.22. Answer to Check Your Progress

UNIT XII – DISTRIBUTED DATABASE & MAPPING CARDNALITIES 151 - 160
12.1. Introduction

12.2. Objective

12.3. Distributed databases

12.3.1. Structure of Distributed Database

12.3.2. Trade-offs in Distributing the Database

12.3.3. Advantages of Data Distribution

12.3.4. Disadvantages of Data Distribution

12.3.5. Design of Distributed databases

12.4. Data Replication

12.5. Data Fragmentation

12.6. Let Us Sum Up

12.7. Unit – End Exercises

12.8. Answer to Check Your Progress

UNIT XIII – OBJECT ORIENTED DBMS 161 - 170
13.1. Introduction

13.2. Objective

13.3. Next Generation Database System

13.4. New Database Application

13.5. Object Oriented Database Management System

13.6. Features of Object Oriented System

13.7. Advantages of Object Oriented Database Management System

13.8. Deficiencies of Relational Database Management System

13.9. Difference between RDBMS and OODBMS

13.10. Alternative Object Oriented Database Strategies

13.11. Let Us Sum Up

13.12. Unit – End Exercises

13.13. Answer to Check Your Progress

UNIT XIV – OBJECT RELATIONAL MAPPING 171 - 184
14.1. Introduction

14.2. Objective

14.3. Significance of Mapping

14.4. Mapping Basics

14.4.1. Mapping a Class Inheritance tree

14.4.2. Mapping Object relationships

14.4.3. Types of Relationships

14.4.5. Implementation of Object Relationships

14.4.6. Implementation of relational database relationships

14.4.7. Relationship Mappings

14.4.8. Mapping Ordered Collections

14.4.9. Mapping recursive relationships

14.4.10. Modeling with join tables

14.4.11. Open Source Object

14.4.12. Relational Mapping Software

14.4. Let Us Sum Up

14.5. Unit – End Exercises

14.6. Answer to Check Your Progress

1

--
UNIT I – DATABASE MANAGEMENT SYSTEM CONCEPTS

Structure

UNIT I – DATABASE MANAGEMENT SYSTEM CONCEPTS
1.1. Introduction

1.2. Objective

1.3. Database Management System Concepts

1.3.1. Significance of Database

1.3.2. Database System Applications

1.3.3. Data Independence

1.3.4. Data Modeling for a Database

1.4. Entities and their Attributes

1.4.1. Entities

 1.4.2. Attributes

1.4.3. Relationships and Relationships Types

1.5. Advantages and Disadvantages of Database Management System

1.6. DBMS Vs RDBMS

1.7. Let Us Sum Up

1.8. Unit – End Exercises

1.9. Answer to Check Your Progress

--
1.1. INTRODUCTION

As an end in itself, understanding database management system concepts and terms is

important to enable you learn more about DBMS and attributes of DBMS after the course is

over. Without understanding these concepts and terms, you will have difficulty discussing

database management system ideas with others, and will have difficulty in reading the technical

literature. Since computer science is rapidly evolving new database management system and

since the issues are important in many areas of computer science the ability to learn more quickly

is important to maintaining your technical edge.

2

--
1.2. OBJECTIVES

After going through this lesson you would be in a positions to

 Use ideas from the various paradigms of database that is not explicitly suited to that

paradigm.

 Implement important run-time database management system and its applications, entities

and its attributes, advantages and disadvantages and compare the DBMS and RDBMS

that use such implementations.

--
1.3. DATABASE MANAGEMENT SYSTEM CONCEPTS

 Data is nothing but facts and statistics stored or free flowing over a network, generally it's

raw and unprocessed. For example: When you visit any website, they might store you IP address,

that is data, in return they might add a cookie in your browser, marking you that you visited the

website, that is data, your name, it's data, your age, it's data.

A Database is a collection of related data organised in a way that data can be easily

accessed, managed and updated. Database can be software based or hardware based, with one

sole purpose, storing data. During early computer days, data was collected and stored on tapes,

which were mostly write-only, which means once data is stored on it, it can never be read again.

They were slow and bulky, and soon computer scientists realized that they needed a better

solution to this problem.

A DBMS is software that allows creation, definition and manipulation of database,

allowing users to store, process and analyse data easily. DBMS provides us with an interface or a

tool, to perform various operations like creating database, storing data in it, updating data,

creating tables in the database and a lot more.

DBMS also provides protection and security to the databases. It also maintains data

consistency in case of multiple users. It consists of a group of programs which manipulate the

database and provide an interface between the databases. It includes the user of the database and

other application programs.

The DBMS accepts the request for data from an application and instructs the operating

system to provide the specific data. In large systems, a DBMS helps users and other third-party

software to store and retrieve data.

1.3.1. Significance of Database

 One of the major aims of a database is to supply users with an abstract view of data,

hiding a certain element of how data is stored and manipulated. So, the starting point for the

3

design of a database must be an abstract and general description of the information requirements

of the organization that is to be represented in the database. And hence you will require an

environment to store data and make it work as a database.

A database management system is important because it manages data efficiently and

allows users to perform multiple tasks with ease. A database management system stores,

organizes and manages a large amount of information within a single software application. Use

of this system increases efficiency of business operations and reduces overall costs.

Database management systems are important to businesses and organizations because

they provide a highly efficient method for handling multiple types of data. Some of the data that

are easily managed with this type of system include: employee records, student information,

payroll, accounting, project management, inventory and library books. These systems are built to

be extremely versatile.

Without database management, tasks have to be done manually and take more time. Data

can be categorized and structured to suit the needs of the company or organization. Data is

entered into the system and accessed on a routine basis by assigned users. Each user may have an

assigned password to gain access to their part of the system. Multiple users can use the system at

the same time in different ways.

A simple database has a single table with rows for the data and columns that define the

data elements. For an address book, the table columns define data elements such as name,

address, city, state and phone number, while a table row, or record, contains data for each person

in the book. The query language provides a way to find specific types of data in each record and

return results that match the criteria. These results display in a form that uses the defined data

elements but only shows records that meet the criteria. These three components make up almost

every type of database.

Relational databases use multiple tables and define relationships between them using a

schema in addition to data elements. Records and data elements from each table merge, based on

the query, and display in the form. Routinely used queries often become reports. A report uses

the same query but reports on changes in data over time.

1.3.2. Database System Applications

Applications where we use Database Management Systems are:

 Telecom: There is a database to keeps track of the information regarding calls made,

network usage, customer details etc. Without the database systems it is hard to maintain

that huge amount of data that keeps updating every millisecond.

 Industry: Where it is a manufacturing unit, warehouse or distribution centre, each one

needs a database to keep the records of ins and outs. For example distribution centre

should keep a track of the product units that supplied into the centre as well as the

products that got delivered out from the distribution centre on each day; this is where

DBMS comes into picture.

4

 Banking System: For storing customer info, tracking day to day credit and debit

transactions, generating bank statements etc. All this work has been done with the help of

Database management systems.

 Sales: To store customer information, production information and invoice details.

 Airlines: To travel though airlines, we make early reservations, this reservation

information along with flight schedule is stored in database.

 Education sector: Database systems are frequently used in schools and colleges to store

and retrieve the data regarding student details, staff details, course details, exam details,

payroll data, attendance details, fees details etc. There is a hell lot amount of inter-related

data that needs to be stored and retrieved in an efficient manner.

 Online shopping: You must be aware of the online shopping websites such as Amazon,

Flipkart etc. These sites store the product information, your addresses and preferences,

credit details and provide you the relevant list of products based on your query. All this

involves a Database management system.

These are a very few applications, this list is never going to end if we start mentioning all the

DBMS applications.

1.3.3. Data Independence

 If a database system is not multi-layered, then it becomes difficult to make any changes

in the database system. Database systems are designed in multi-layers as we learnt earlier.

 A database system normally contains a lot of data in addition to users’ data. For example,

it stores data about data, known as metadata, to locate and retrieve data easily. It is rather

difficult to modify or update a set of metadata once it is stored in the database. But as a DBMS

expands, it needs to change over time to satisfy the requirements of the users. If the entire data is

dependent, it would become a tedious and highly complex job.

Figure 1: - Data Independence

Metadata itself follows a layered architecture, so that when we change data at one layer,

it does not affect the data at another level. This data is independent but mapped to each other.

5

Logical Data Independence

Logical data is data about database, that is, it stores information about how data is

managed inside. For example, a table (relation) stored in the database and all its constraints,

applied on that relation.

Logical data independence is a kind of mechanism, which liberalizes itself from actual data

stored on the disk. If we do some changes on table format, it should not change the data residing

on the disk.

Physical Data Independence

All the schemas are logical, and the actual data is stored in bit format on the disk.

Physical data independence is the power to change the physical data without impacting the

schema or logical data.

For example, in case we want to change or upgrade the storage system itself − suppose

we want to replace hard-disks with SSD − it should not have any impact on the logical data or

schemas.

1.3.4. Data Modeling for a Database

 Data models define how the logical structure of a database is modeled. Data Models are

fundamental entities to introduce abstraction in a DBMS. Data models define how data is

connected to each other and how they are processed and stored inside the system.

 The data model plays an important role in database design. The physical or logical

structure of a database is spelt out by the data model. A data model is a collection of conceptual

tools used for describing data, data relationships, data semantics and data constraints. Evaluation

of different data models is still in progress as the primary objective is to evolve a high level data

model. The model should enable the designer to incorporate a major portion of semantics of the

database in the schema. Numerous data models have been proposed which can be broadly

classified in the following categories.

Figure 2: - Data Modeling

6

Classification of Data Models

1. Object based data models

2. Record – based data models

3. Physical data models

Object-based logical models

Object-based logical models are used in describing data at logical and view levels. They

are characterized by the fact they provide flexible structuring capabilities and allow data

constraints to be specified explicitly. There are many different data models, some of them are

1. The Entity-relationship model.

2. The Object-oriented model.

3. The semantic data model.

4. The Functional data model.

Record-based data models

 These models are used to specify the overall logical structure of the database. With some

models a higher level description of the implementation of the structure of the database can also

be specified explicitly. The data integrity constraints cannot be specified explicitly with these

models. In record based data models, the database is structured in fixed formats records of

several types. Each record defines fixed number of fields (attributes) and each field is fixed

length. These models are used to specify the overall logical structure of the database and are used

in describing the database at conceptual level. The three widely accepted record – based data

models are

1. Relational model

2. Network model

3. Hierarchical model

Physical Data Models

Physical data model are used to describe data at the lowest level. In contrast to logical

data models, there are few number of physical data models which are in use. Very few physical

data models have been proposed so far.

Two of these well known models are the unifying model and the frame memory model.

--
1.4. ENTITIES AND THEIR ATTRIBUTES

 Entity-relationship model is a model used for design and representation of relationships

between data.

The main data objects are termed as Entities, with their details defined as attributes, some

of these attributes are important and are used to identity the entity, and different entities are

related using relationships.

7

1.4.1. Entities

They are represented using the rectangle shape box. These rectangles are named with the

entity set they represent.

ER modeling is a top-down structure to database design that begins with identifying the

important data called entities and relationships in combination with the data that must be

characterized in the model. Then database model designers can add more details such as the

information they want to hold about the entities and relationships which are the attributes and

any constraints on the entities, relationships, and attributes. ER modeling is an important

technique for any database designer to master and forms the basis of the methodology.

 Entity type: It is a group of objects with the same properties that are identified by the

enterprise as having an independent existence. An entity type has an independent

existence within a database.

 Entity occurrence: A uniquely identifiable object of an entity type.

1.4.2. Attributes

Attributes are the properties of entities that are represented using ellipse shaped figures.

Every elliptical figure represents one attribute and is directly connected to its entity (which is

represented as a rectangle).

1.4.3. Relationship

A relationship type is a set of associations between one or more participating entity types.

Each relationship type is given a name that describes its function.

The entities occupied in a particular relationship type are referred to as participants in that

relationship. The number of participants involved in a relationship type is termed as the degree of

that relationship.

A diamond-shaped box represents relationships. All the entities (rectangle shaped)

participating in a relationship gets connected using a line.

There are four types of relationships. These are:

 One-to-one: When only a single instance of an entity is associated with the relationship, it

is termed as '1:1'.

 One-to-many: When more than one instance of an entity is related and linked with a

relationship, it is termed as '1:N'.

 Many-to-one: When more than one instance of an entity is linked with the relationship, it

is termed as 'N:1'.

 Many-to-many: When more than one instance of an entity on the left and more than one

instance of an entity on the right can be linked with the relationship, then it is termed as

N:N relationship.

8

--
1.5. ADVANTAGES AND DISADVANTAGES OF DBMS

 A database management system (DBMS) refers to the technology for creating and

managing databases. DBMS is a software tool to organize (create, retrieve, update and manage)

data in a database.

 The main aim of a DBMS is to supply a way to store up and retrieve database

information that is both convenient and efficient. By data, we mean known facts that can be

recorded and that have embedded meaning.

A DBMS manage data and has many advantages. These are:

 Data independence: Application programs should be as free or independent as possible

from details of data representation and storage. DBMS can supply an abstract view of the

data for insulating application code from such facts.

 Efficient data access: DBMS utilizes a mixture of sophisticated concepts and techniques

for storing and retrieving data competently, and this feature becomes important in cases

where the data is stored on external storage devices.

 Data integrity and security: If data is accessed through the DBMS, the DBMS can

enforce integrity constraints on the data.

 Data administration: When several users share the data, integrating the administration of

data can offer major improvements. Experienced professionals understand the nature of

the data being managed and can be responsible for organizing the data representation to

reduce redundancy and make the data to retrieve efficiently.

Disadvantages of DBMS

 It's Complexity

 Except MySQL, which is open source, licensed DBMSs are generally costly.

 They are large in size.

--
1.6. DBMS VS RDBMS

 A DBMS is software used to store and manage data. The DBMS was introduced during

1960's to store any data. It also offers manipulation of the data like insertion, deletion, and

updating of the data.

DBMS system also performs the functions like defining, creating, revising and

controlling the database. It is specially designed to create and maintain data and enable the

individual business application to extract the desired data.

9

Relational Database Management System (RDBMS) is an advanced version of a DBMS

system. It came into existence during 1970's. RDBMS system also allows the organization to

access data more efficiently then DBMS.

RDBMS is a software system which is used to store only data which need to be stored in

the form of tables. In this kind of system, data is managed and stored in rows and columns which

is known as tuple and attributes. RDBMS is a powerful data management system and is widely

used across the world.

The main differences between DBMS and RDBMS are given below:

No. DBMS RDBMS

1) DBMS applications store data as file.
RDBMS applications store data in a tabular

form.

2)

In DBMS, data is generally stored in

either a hierarchical form or a

navigational form.

In RDBMS, the tables have an identifier

called primary key and the data values are

stored in the form of tables.

3)
Normalization is not present in

DBMS.
Normalization is present in RDBMS.

4)

DBMS does not apply any

security with regards to data

manipulation.

RDBMS defines the integrity constraint for

the purpose of ACID (Atomocity,

Consistency, Isolation and Durability)

property.

5)

DBMS uses file system to store data,

so there will be no relation between

the tables.

in RDBMS, data values are stored in the

form of tables, so a relationship between

these data values will be stored in the form of

a table as well.

6)

DBMS has to provide some uniform

methods to access the stored

information.

RDBMS system supports a tabular structure

of the data and a relationship between them

to access the stored information.

7)
DBMS does not support distributed

database.
RDBMS supports distributed database.

8)

DBMS is meant to be for small

organization and deal with small data.

it supports single user.

RDBMS is designed to handle large amount

of data. it supports multiple users.

9)
Examples of DBMS are file

systems, xml etc.

Example of RDBMS are mysql, postgre, sql

server, oracle etc.

10

--
1.7. LET US SUM UP

 In this unit, you have learnt about the database & database systems, significance and

applications of database system, entities and attributes of database system, and advantages and

disadvantages of database. This knowledge would make you understand the basics of database

and database management system concepts and comparison of DBMS with RDBMS used to

solve the real time problems. Thus, the database management system concepts unit would have

brought you to closer to know the concept of database systems.

--
1.8. UNIT – END QUESTIONS

1. List out the basic concepts of database management system.

2. Explain about the relationship between categories of programming languages.

3. Write about the advantages and disadvantages of DBMS.

--
1.9. ANSWER TO CHECK YOUR PROGRESS

1. A Database is a collection of related data organised in a way that data can be easily accessed,

managed and updated. Database can be software based or hardware based, with one sole

purpose, storing data. A DBMS is software that allows creation, definition and manipulation

of database, allowing users to store, process and analyse data easily. DBMS provides us with

an interface or a tool, to perform various operations like creating database, storing data in it,

updating data, creating tables in the database and a lot more. DBMS also provides protection

and security to the databases. It also maintains data consistency in case of multiple users.

Database management systems are important to businesses and organizations because they

provide a highly efficient method for handling multiple types of data. Some of the data that

are easily managed with this type of system include: employee records, student information,

payroll, accounting, project management, inventory and library books. These systems are

built to be extremely versatile.

2. ER modeling is a top-down structure to database design that begins with identifying the

important data called entities and relationships in combination with the data that must be

characterized in the model. A relationship type is a set of associations between one or more

participating entity types. Each relationship type is given a name that describes its function.

11

Attributes are the properties of entities that are represented using ellipse shaped figures.

Every elliptical figure represents one attribute and is directly connected to its entity.

3. The main aim of a DBMS is to supply a way to store up and retrieve database information

that is both convenient and efficient. By data, we mean known facts that can be recorded and

that have embedded meaning. Disadvantages of DBMS are, it's Complexity, except MySQL,

which is open source, licensed DBMSs are generally costly and they are large in size.

.

12

--
UNIT II – DATABASE SYSTEM ARCHITECTURE

Structure

UNIT II – DATABASE SYSTEM ARCHITECTURE
2.1. Introduction

2.2. Objective

2.3. Three Level Architecture of DBMS

2.3.1. The External Level or Subschema

2.3.2. The Conceptual Level or Conceptual Schema

2.3.3. The Internal Level or Physical Schema

2.4. Mapping

2.5. MySQL Architecture

2.6. SQL Server 2000 Architecture

2.7. Oracle Architecture

2.8. Database Management System Facilities

2.9. Data Definition Language

2.10. Data Manipulation Language

2.11. Database Management System Structure

2.12. Database Manager

2.13. Database Administrator

2.14. Data Dictionary

2.15. Distributed Processing

2.16. Information and Communication Technology System (ICT)

2.17. Client / Server Architecture

2.18. Let Us Sum Up

2.19. Unit – End Exercises

2.20. Answer to Check Your Progress

--
2.1. INTRODUCTION

In this lesson you will be aware with the basic elements used to construct and manage the

databases. These elements include the architecture, facilities, DDL, DML, structure of DBMS

and players of DBMS. These basic elements are used to construct and manage the more

comprehensive database components. Some of the basic elements needs very detailed

13

information, however, the purpose of this type of basic elements is to introduce certain basic

concepts and to provide some necessary definitions for the topics that follow in next few lessons.

--
2.2. OBJECTIVES

After going through this lesson you would be in a positions to

 Three levels of architecture.

 DDL & DML languages.

 Define data dictionary and distributed processing.

 Explain the concept of ICT.

--
2.3. THREE LEVEL ARCHITECTURE OF DBMS

 DBMS architecture helps in design, development, implementation, and maintenance of a

database. A database stores critical information for a business. Selecting the correct Database

Architecture helps in quick and secure access to this data.

There are mainly three levels of data abstraction:

1. Internal Level: Actual PHYSICAL storage structure and access paths.

2. Conceptual or Logical Level: Structure and constraints for the entire database.

3. External or View level: Describes various user views.

Figure 3: - Three Level Architecture of DBMS

2.3.1. External Schema/Level

An external schema describes the part of the database which specific user is interested in.

It hides the unrelated details of the database from the user. There may be "n" number of external

views for each database.

14

Each external view is defined using an external schema, which consists of definitions of

various types of external record of that specific view.

An external view is just the content of the database as it is seen by some specific

particular user. For example, a user from the sales department will see only sales related data.

Facts about external schema:
 An external level is only related to the data which is viewed by specific end users.

 This level includes some external schemas.

 External schema level is nearest to the user.

 The external schema describes the segment of the database which is needed for a certain

user group and hides the remaining details from the database from the specific user

group.

2.3.2. Conceptual Schema/Level

The conceptual schema describes the Database structure of the whole database for the

community of users. This schema hides information about the physical storage structures and

focuses on describing data types, entities, relationships, etc.

This logical level comes between the user level and physical storage view. However,

there is only single conceptual view of a single database.

Facts about Conceptual schema:

 Defines all database entities, their attributes, and their relationships.

 Security and integrity information.

 In the conceptual level, the data available to a user must be contained in or derivable

from the physical level.

2.3.3. Internal Level/Schema

The internal schema defines the physical storage structure of the database. The internal

schema is a very low-level representation of the entire database. It contains multiple occurrences

of multiple types of internal record. In the ANSI term, it is also called "stored record'.

Facts about Internal schema:
 The internal schema is the lowest level of data abstraction.

 It helps you to keeps information about the actual representation of the entire database.

Like the actual storage of the data on the disk in the form of records.

 The internal view tells us what data is stored in the database and how.

 It never deals with the physical devices. Instead, internal schema views a physical device

as a collection of physical pages.

DBMS Architecture allows you to make changes on the presentation level without affecting the

other two layers

15

--
2.4. MAPPING

 The DBMS is responsible for mapping between the three types of schemas. It must be

capable of checking the schema for consistency and must use the info. In the schema to map

between external schema and internal schema via the conceptual schema as shown in the figure

below:-

Figure 4: - Mapping of DBMS Architecture

Process of transforming request and results between three level it's called mapping.

There are the two types of mappings:

1. Conceptual/Internal Mapping

2. External/Conceptual Mapping

16

1. Conceptual/Internal Mapping:

 The conceptual/internal mapping defines the correspondence between the conceptual

view and the store database.

 It specifies how conceptual record and fields are represented at the internal level.

 It relates conceptual schema with internal schema.

 If structure of the store database is changed.

 If changed is made to the storage structure definition-then the conceptual/internal

mapping must be changed accordingly, so that the conceptual schema can remain

invariant.

 There could be one mapping between conceptual and internal levels.

2. External/Conceptual Mapping:

 The external/conceptual mapping defines the correspondence between a particular

external view and conceptual view.

 It relates each external schema with conceptual schema.

 The differences that can exist between these two levels are analogous to those that can

exist between the conceptual view and the stored database.

 Example: fields can have different data types; fields and record name can be changed;

several conceptual fields can be combined into a single external field.

 Any number of external views can exist at the same time; any number of users can share

a given external view: different external views can overlap.

 There could be several mapping between external and conceptual levels.

--
2.5. MySQL ARCHITECTURE

 MySQL is very different from other database servers, and its architectural characteristics

make it useful for a wide range of purposes as well as making it a poor choice for others.

MySQL is not perfect, but it is flexible enough to work well in very demanding environments,

such as web applications. At the same time, MySQL can power embedded applications, data

warehouses, content indexing and delivery software, highly available redundant systems, online

transaction processing (OLTP), and much more.

To get the most from MySQL, you need to understand its design so that you can work

with it, not against it. MySQL is flexible in many ways. For example, you can configure it to run

well on a wide range of hardware, and it supports a variety of data types. However, MySQL’s

most unusual and important feature is its storage-engine architecture, whose design separates

query processing and other server tasks from data storage and retrieval.

MySQL architecture is broken into three layers basically which can be defined by,

17

1. Application Layer.

2. Logical Layer.

3. Physical Layer.

1. Application Layer

The application layer is where the clients and users interact with the MySQL RDBMS.

All the services needed for connection handling, authentication, security are here. There are three

main components in this layer namely Administrators, Clients, Query Users as shown in the

below figure.

Figure 5: - Application Layer

 Administrators

Administrators use various administrative interface and utilities like mysqladmin

which performs tasks like shutting down the server and creating or dropping databases,

mysqldump for backing up the database or copying databases to another server.

 Clients

Clients communicate with MySQL through various interfaces and utilities like

MySQL API’s. The MySQL API sends the query to the server as a series of tokens.

 Query User

The query users interact with MySQL RDBMS through a query interface that

is mysql.

2. Logical Layer

The Logical Layer takes the data from the Application Layer. Any functionality provided

across storage engines lives at this level like stored procedures, triggers and views. It is divided

into subsystems like Query Processor, Transaction Management, Recovery Management, and

Storage Management. These subsystems work together to process the requests issued to the

MySQL database server. The output of one of the above subsystems becomes the input for

another. Below is the basic conceptional diagram.

18

Figure 6: - Logical Layer

3. Physical Layer

The third layer is the Physical Layer which contains the storage engines. They are

responsible for storing and retrieving all data stored in MySQL. Physical Layer of MySQL is

slightly different from other RDBMS. Here the physical system consists of Pluggable Storage

Engine architecture that enables storage engines to be loaded into and unloaded from a running

MySQL server.

 MySQL stores each database (also called a schema) as a subdirectory of its data directory

in the underlying file system. Every database has a corresponding data directory. When you

create a table, MySQL stores the table definition in a .frm file with the same name as the table.

--
2.6. SQL SERVER 2000 ARCHITECTURE

 Microsoft SQL Server provides a robust, if simpler, configuration for enterprise database

applications. Microsoft SQL Server uses a set of kernel-based libraries to manage the internal

database operations. Microsoft SQL Server divides its mechanism for data storage into the

concept of physical and logical storage into the physical medium of file groups, files, transaction

logs and the logical aspect into databases. Each database within a SQL Server environment is

assigned to its own set of file group and transaction logs stored on disk. Unlike an Oracle

19

environment that has a one-to-one correlation of one instance per database, the Microsoft SQL

Server 2000 architecture is quite a bit different.

SQL Server 2000 provides a set of components that work together to meet the needs of

the largest data processing systems and commercial Web sites while providing easy-to-use data

storage services to an individual or small business.

SQL Server 2000 consists of numerous components that interact to provide complete

database application capabilities, including relational database management, OLAP, data mining,

full-text indexing, data import and export, and replication, as well as client access, as depicted in

Figure 4.1. In the later chapters of this book, we review each of these components in detail and

assist you in configuring and using them in your applications. This chapter begins by exploring

the base components of SQL Server and its databases.

Figure 7: - SQL Server 2000 Architecture

 SQL Server 2000 data is stored in databases. The data in a database is organized into the

logical components that are visible to users, while the database itself is physically implemented

as two or more files on disk.

Logical Database Components

The logical database components include objects, collations, logins, users, roles, and

groups.

 An object in a SQL Server 2000 database can use a collation different from another

object within that same database.

20

 Collations control the physical storage of character strings in SQL Server 2000. A

collation specifies the bit patterns that represent each character and the rules by which characters

are sorted and compared.

 Logins, users, roles, and groups are the foundation for the security mechanisms of SQL

Server 2000. Users who connect to SQL Server must identify themselves by using a Specific

Login Identifier (ID). Users can then see only the tables and views that they are authorized to see

and can execute only the stored procedures and administrative functions that they are authorized

to execute. This system of security is based on the IDs used to identify users.

Physical Database Architecture

The fundamental unit of data storage in SQL Server is the page. In SQL Server 2000, the

page size is 8 kilobytes (KB). In other words, SQL Server 2000 databases contain 128 pages per

megabyte (MB).

The start of each page is a 96-byte header used to store system information, such as the

type of page, the amount of free space on the page, and the object ID of the object owning the

page.

 Extents are the basic unit in which space is allocated to tables and indexes. An extent is

eight contiguous pages, or 64 KB. In other words, SQL Server 2000 databases have 16 extents

per megabyte.

--
2.7. ORACLE ARCHITECTURE

 An Oracle database is a collection of data treated as a unit. The purpose of a database is

to store and retrieve related information. A database server is the key to solving the problems of

information management. In general, a server reliably manages a large amount of data in a

multiuser environment so that many users can concurrently access the same data. All this is

accomplished while delivering high performance. A database server also prevents unauthorized

access and provides efficient solutions for failure recovery.

Oracle Database is the first database designed for enterprise grid computing, the most

flexible and cost effective way to manage information and applications. Enterprise grid

computing creates large pools of industry-standard, modular storage and servers. With this

architecture, each new system can be rapidly provisioned from the pool of components. There is

no need for peak workloads, because capacity can be easily added or reallocated from the

resource pools as needed.

The database has logical structures and physical structures. Because the physical and

logical structures are separate, the physical storage of data can be managed without affecting the

access to logical storage structures.

https://docs.oracle.com/cd/B19306_01/server.102/b14220/glossary.htm#i432724

21

In the following sections we discuss the main components of the Oracle DBMS

architecture and the logical and physical database structures.

Logical Database Structures

For the architecture of an Oracle database we distinguish between logical and physical

database structures that make up a database. Logical structures describe logical areas of storage

(name spaces) where objects such as tables can be stored. Physical structures, in contrast, are

determined by the operating system files that constitute the database. The logical database

structures include:

 Database: -

A database consists of one or more storage divisions, so-called tablespaces.

 Tablespaces: -

A tablespace is a logical division of a database. All database objects are logically

stored in tablespaces.

 Segments: -

If a database object (e.g., a table or a cluster) is created, automatically a portion of

the tablespace is allocated. This portion is called a segment..

 Extent: -

An extent is the smallest logical storage unit that can be allocated for a database

object, and it consists a contiguous sequence of data blocks.

Physical Database Structure

The physical database structure of an Oracle database is determined by files and data blocks:

 Data Files: -

A tablespace consists of one or more operating system files that are stored on

disk. Thus a database essentially is a collection of data files that can be stored on

different storage devices.

 Blocks: -

An extent consists of one or more contiguous Oracle data blocks. A block

determines the finest level of granularity of where data can be stored. One data

block corresponds to a specific number of bytes of physical database space on

disk.

 Redo-Log Files: -

Each database instance maintains a set of redo-log files. These files are used to

record logs of all transactions. The logs are used to recover the database’s

transactions in their proper order in the event of a database crash.

 Control Files: -

Each database instance has at least one control file. In this file the name of the

database instance and the locations (disks) of the data files and redo-log files are

recorded.

 Archive/Backup Files: -

22

If an instance is running in the archive-log mode, the ARCH process archives the

modifications of the redo-log files in extra archive or backup files. In contrast to

redo-log files, these files are typically not overwritten.

--
2.8. DATABASE MANAGEMENT SYSTEM FACILITIES

Typically, a DBMS provides the following facilities

 Data Definition Language (DDL)

It allows a database designer to define the database using a Data Definition

Language (DDL) provided for the particular DBMS. The DDL allows the designer to

specify the data types and structures, and the constraints on the data to be stored in the

database.

 Data Manipulation Language (DML)

It allows users to insert, update, delete and retrieve data from the database through

a Data Manipulation Language (DML). Having a central repository for all data and data

descriptions allows the DML to provide a general enquiry facility to this data, called a

query language. Using a query language, directly or indirectly, enables new lines of

enquiry to be constructed and satisfied quickly. A query language is sufficiently high

level to allow non-technical personnel to use it, easily. The most common query language

is the Structured Query Language (SQL –pronounced ‘S-Q-L’).

 View Mechanism

The DBMS provides a view mechanism that allows each user to have his or her

own view of the database. The DDL is used to define a view that is a subset of the

database.

 Multiple indexes

An index is a mechanism for reducing the time taken to find a specific item of

data in a database. A database index works in a similar way to a user of the index in this

book. If you want to use this book to find out about the topic “multiple indexes“then you

have a choice.

An index in a database can store each value of an indexed data item (field), e.g.

student enrolment number, together with the page number in the storage medium where

the data belonging to this value is stored. For example, information stored in a database

about a particular student such as surname, home address, et cetera may be quickly found

if an index has been created that stores every student’s enrolment number and the

location of the corresponding information.

23

Indexes may also be created on other fields of a student’s record, e.g. surname,

address. However, since some fields such as the surname are unlikely to be unique, the

entries in the index may reference more than one location, just like the entries in the

index for this book. An index on a unique field is known as a primary index whereas an

index on a non-unique field is known as a secondary index.

 Indexing Overheads

Indexes have to be constantly kept up to date. When a new data value is added or

modified the corresponding index must be updated. This takes time. This is called an

update overhead.

--
2.9. DATA DEFINITION LANGUAGE

 Data Definition language (DDL) in DBMS with Examples: Data Definition Language

can be defined as a standard for commands through which data structures are defined. It is a

computer language that used for creating and modifying the structure of the database objects,

such as schemas, tables, views, indexes, etc. Additionally, it assists in storing the metadata

details in the database.

Some of the common Data Definition Language commands are:

 CREATE

 ALTER

 DROP

CREATE- Data Definition language (DDL)

The main use of the create command is to build a new table and it comes with a

predefined syntax. It creates a component in a relational database management system. There are

many implementations that extend the syntax of the command to create the additional elements,

like user profiles and indexes.

The general syntax for the create command in Data Definition Language is mentioned below:

CREATE TABLE tablename (Column1 DATATYPE, Column2 DATATYPE, Column3

DATATYPE, …….. ColumnN DATATYPE)

ALTER- Data Definition language (DDL)

An existing database object can be modified by the ALTER statement. Using this

command, the users can add up some additional column and drop existing columns.

Additionally, the data type of columns involved in a database table can be changed by the

ALTER command.

The general syntax of the ALTER command is mentioned below:

24

ALTER TABLE table_name ADD column_name (for adding a new column).

ALTER TABLE table_name RENAME To new_table_name (for renaming a table).

ALTER TABLE table_name MODIFY column_name data type (for modifying a column).

ALTER TABLE table_name DROP COLUMN column_name (for deleting a column).

Drop- Data Definition language (DDL)

By the use of this command, the users can delete an index, table or view. A component

from a relational database management system can be removed by a DROP statement in SQL.

There are many systems that allow the DROP and some other Data Definition Language

commands for occurring inside a transaction and then it can be rolled back.

The object will not be available for use once the DROP statement executed.

The General syntax of the Drop command is mentioned below:

DROP TABLE table_name;

DROP DATABASE database_name;

DROP TABLE Student;

DROP TABLE index_name;

Truncate- Data Definition language (DDL)

By using the Truncate command, the users can remove the table content, but the structure

of the table is kept. In simple language, it removes all the records from the table structure. The

users can’t remove data partially through this command. In addition to this, every space allocated

for the data is removed by Truncate command.

The syntax of the Truncate command is mentioned below:

TRUNCATE TABLE table_name;

TRUNCATE TABLE Student;

--
2.10. DATA MANIPULATION LANGUAGE

 Data Manipulation Language (DML) can be defined as a set of syntax elements that are

used to manage the data in the database. The commands of DML are not auto-committed and

modification made by them is not permanent to the database. It is a computer programming

language that is used to perform select, insert, delete and update data in a database. The user

requests are assisted by Data Manipulation Language. This language is responsible for all forms

of data modification in a database.

A data manipulation language (DML) is a family of computer languages including

commands permitting users to manipulate data in a database. This manipulation involves

inserting data into database tables, retrieving existing data, deleting data from existing tables and

modifying existing data. DML is mostly incorporated in SQL databases.

25

DML resembles simple English language and enhances efficient user interaction with the

system. The functional capability of DML is organized in manipulation commands like

SELECT, UPDATE, INSERT INTO and DELETE FROM, as described below:

 SELECT: This command is used to retrieve rows from a table. The syntax is SELECT

[column name(s)] from [table name] where [conditions]. SELECT is the most widely

used DML command in SQL.

 UPDATE: This command modifies data of one or more records. An update command

syntax is UPDATE [table name] SET [column name = value] where [condition].

 INSERT: This command adds one or more records to a database table. The insert

command syntax is INSERT INTO [table name] [column(s)] VALUES [value(s)].

 DELETE: This command removes one or more records from a table according to

specified conditions. Delete command syntax is DELETE FROM [table name] where

[condition].

--
2.11. DATABASE MANAGEMENT SYSTEM STRUCTURE

 A database is an organized collection of data. Instead of having all the data in a list with a

random order, a database provides a structure to organize the data. One of the most common data

structures is a database table. A database table consists of rows and columns. A database table is

also called a two-dimensional array. An array is like a list of values, and each value is identified

by a specific index. A two-dimensional array uses two indices, which correspond to the rows and

columns of a table.

In database terminology, each row is called a record. A record is also called an object or

an entity. In other words, a database table is a collection of records. The records in a table are the

objects you are interested in, such as the books in a library catalog or the customers in a sales

database. A field corresponds to a column in the table and represents a single value for each

record. A field is also called an attribute. In other words, a record is a collection of related

attributes that make up a single database entry.

DBMS (Database Management System) acts as an interface between the user and the

database. The user requests the DBMS to perform various operations (insert, delete, update and

retrieval) on the database. The components of DBMS perform these requested operations on the

database and provide necessary data to the users. The various components of DBMS are shown

below: -

26

Figure 8: - DBMS Structure

1. DDL Compiler - Data Description Language compiler processes schema definitions

specified in the DDL. It includes metadata information such as the name of the files, data items,

storage details of each file, mapping information and constraints etc.

2. DML Compiler and Query optimizer - The DML commands such as insert, update,

delete, retrieve from the application program are sent to the DML compiler for compilation into

object code for database access. The object code is then optimized in the best way to execute a

query by the query optimizer and then send to the data manager.

3. Data Manager - The Data Manager is the central software component of the DBMS

also knows as Database Control System.

The Main Functions Of Data Manager Are: –

 Convert operations in user's Queries coming from the application programs or

combination of DML Compiler and Query optimizer which is known as Query Processor

from user's logical view to physical file system.

 Controls DBMS information access that is stored on disk.

 It also controls handling buffers in main memory.

 It also enforces constraints to maintain consistency and integrity of the data.

 It also synchronizes the simultaneous operations performed by the concurrent users.

 It also controls the backup and recovery operations.

4. Data Dictionary - Data Dictionary is a repository of description of data in the database. It

contains information about

27

 Data - names of the tables, names of attributes of each table, length of attributes, and

number of rows in each table.

 Relationships between database transactions and data items referenced by them which is

useful in determining which transactions are affected when certain data definitions are

changed.

 Constraints on data i.e. range of values permitted.

 Detailed information on physical database design such as storage structure, access paths,

files and record sizes.

 Access Authorization - is the Description of database users their responsibilities and their

access rights.

 Usage statistics such as frequency of query and transactions.

Data dictionary is used to actually control the data integrity, database operation and

accuracy. It may be used as a important part of the DBMS.

Importance of Data Dictionary -

Data Dictionary is necessary in the databases due to following reasons:

 It improves the control of DBA over the information system and user's understanding of

use of the system.

 It helps in documentating the database design process by storing documentation of the

result of every design phase and design decisions.

 It helps in searching the views on the database definitions of those views.

 It provides great assistance in producing a report of which data elements (i.e. data values)

are used in all the programs.

 It promotes data independence i.e. by addition or modifications of structures in the

database application program are not affected.

5. Data Files - It contains the data portion of the database.

6. Compiled DML - The DML complier converts the high level Queries into low level file access

commands known as compiled DML.

7. End Users - They are already discussed in previous section.

--
2.12. DATABASE MANAGER

 The data manager is the central software component of the DBMS. It is sometimes

referred to as the database control system. One of the functions of the data manager is to convert

operations in the user’s queries coming directly via the query processor or indirectly via an

application program from user’s logical view to a physical file system. The data manager is

responsible for interfacing with the file system. In addition, the tasks of enforcing constraints to

28

maintain the consistency and integrity of the data, as well as its security, are also performed by

the data manager. Synchronizing the simultaneous operations performed by concurrent users is

under the control of the data manager. It is also entrusted with the backup and recovery

operations.

A database manager (DB manager) is a computer program, or a set of computer

programs, that provide basic database management functionalities including creation and

maintenance of databases. Database managers have several capabilities including the ability to

back up and restore, attach and detach, create, clone, delete and rename the databases.

Database managers are used to manage local and remote databases. They discover

databases based on the Web server and provide the ability to connect to any of the databases

residing in the network. They provide a handful of administrative functionalities such as

managing tables, views and stored procedures, as well as run ad hoc queries.

DB managers connect to the database and display information from catalogs that are part

of a database. DB managers can have a set of command-line parameters, which allow them to

initiate features and functions external to the graphical user interface.

DB managers allow database administrators to define new patches for databases or to

easily apply new patches that come from vendors, thus updating databases with enhancements

and keeping them secure.

--
2.13. DATABASE ADMINISTRATOR

 Centralized control of the database is exerted by a person or group of persons under the

supervision of a high-level administrator. This person or group is referred to as the database

administrator (DBA). They are the users who are most familiar with the database and are

responsible for creating, modifying, and maintaining its three levels. Database Administrator is

responsible to manage the DBMS’s use and ensure that the database is functioning properly.

 DBA administers the three levels of database and consultation with the overall user

community, sets up the definition of the global view of the various users and applications and is

responsible the definition and implementation of the internal level, including the storage

structure and access methods to be used for the optimum performance of the DBMS. DBA is

responsible for granting permission to the users of the database and stores the profile of each user

in the database.

Responsibilities

Designing & creating relational database objects such as tables, views & indexes;

Supporting and maintaining the environment a relational database requires to properly function

(i.e., security, recovery, backup & reorganizations) ; Ensuring that relational database access

code performs efficiently (i.e., SQL review, database monitoring).

29

Activities - Central DBA

 Developing & maintaining naming standards for database objects such as tablespaces,

tables, indexes & views

 Participating in database migration reviews

 Assisting in product installation & reviewing initial installation options; for Oracle, the

Central DBA will assist in product installation and specify initial installation options

 Providing functional guidance to the systems programmer & the operator. For Oracle, the

Central DBA will provide this functional guidance to the Unix System Administrator.

 Evaluating & testing DBMS related software

 Develop operational procedures • Supporting, monitoring & tuning the database

subsystems & instances; for Oracle this includes starting and stopping the instances,

listeners, and intelligent agents

 Participate in selecting database management support tools

 Developing & implementing database administration policies & procedures including

subsystem or instance security guidelines

These are the functions of a data administrator (not to be confused with database

administrator functions):

 Data policies, procedures, standards

 Planning- development of organization's IT strategy, enterprise model, cost/benefit

model, design of database environment, and administration plan.

 Data conflict (ownership) resolution

 Data analysis- Define and model data requirements, business rules, operational

requirements, and maintain corporate data dictionary

 Internal marketing of DA concepts

 Managing the data repository

--
2.14. DATA DICTIONARY

 A data dictionary contains metadata i.e data about the database. The data dictionary is

very important as it contains information such as what is in the database, who is allowed to

access it, where is the database physically stored etc. The users of the database normally don't

interact with the data dictionary; it is only handled by the database administrators.

The data dictionary in general contains information about the following:

 Names of all the database tables and their schemas.

 Details about all the tables in the database, such as their owners, their security

constraints, when they were created etc.

 Physical information about the tables such as where they are stored and how.

30

 Table constraints such as primary key attributes, foreign key information etc.

 Information about the database views that are visible.

 The different types of data dictionary are:

 Active Data Dictionary

 If the structure of the database or its specifications changes at any point of time, it should

be reflected in the data dictionary. This is the responsibility of the database management

system in which the data dictionary resides.

 So, the data dictionary is automatically updated by the database management system

when any changes are made in the database. This is known as an active data dictionary as

it is self updating.

 Passive Data Dictionary

 This is not as useful or easy to handle as an active data dictionary. A passive data

dictionary is maintained separately to the database whose contents are stored in the

dictionary. That means that if the database is modified the database dictionary is not

automatically updated as in the case of Active Data Dictionary.

 So, the passive data dictionary has to be manually updated to match the database. This

needs careful handling or else the database and data dictionary are out of sync.

A data dictionary is a file or a set of files that contains a database's metadata. The data

dictionary contains records about other objects in the database, such as data ownership, data

relationships to other objects, and other data.

The data dictionary is a crucial component of any relational database. Ironically, because

of its importance, it is invisible to most database users. Typically, only database administrators

interact with the data dictionary.

In a relational database, the metadata in the data dictionary includes the following:

 Names of all tables in the database and their owners

 Names of all indexes and the columns to which the tables in those indexes relate

 Constraints defined on tables, including primary keys, foreign-key relationships to other

tables, and not-null constraints

For most relational database management systems (RDBMS), the database management system

software needs the data dictionary to access the data within a database. For example, the Oracle

DB software has to read and write to an Oracle DB. However, it can only do this via the data

dictionary created for that particular database.

--
2.15. DISTRIBUTED PROCESSING

 In distributed processing, a database’s logical processing is shared among two or more

physically independent sites that are connected through a network. For example, the data

31

input/output (I/O), data selection, and data validation might be performed on one computer, and

a report based on that data might be created on another computer.

A distributed database, on the other hand, stores a logically related database over two or

more physically independent sites. The sites are connected via a computer network. In contrast,

the distributed processing system uses only a single-site database but shares the processing

chores among several sites. In a distributed database system, a database is composed of several

parts known as database fragments. The database fragments are located at different sites and can

be replicated among various sites. Each database fragment is, in turn, managed by its local

database process.

 Distributed processing does not require a distributed database, but a distributed database

requires distributed processing.

 Distributed processing may be based on a single database located on a single computer.

For the management of distributed data to occur, copies or parts of the database

processing functions must be distributed to all data storage sites.

 Both distributed processing and distributed databases require a network to connect all

components.

Distributed data processing is a computer-networking method in which multiple computers

across different locations share computer-processing capability. This is in contrast to a single,

centralized server managing and providing processing capability to all connected systems.

Computers that comprise the distributed data-processing network are located at different

locations but interconnected by means of wireless or satellite links.

Lower Cost

Larger organizations invest in expensive mainframe and supercomputers to function as

centralized servers. Each mainframe machine,

Reliable

Hardware glitches and software anomalies can cause single-server processing to

malfunction and fail, resulting in a complete system breakdown. Distributed data processing is

more reliable, since multiple control centers are spread across different machines.

Improved Performance and Reduced Processing Time

Single computers are limited in their performance and efficiency. An easy way to

increase performance is by adding another computer to a network. Adding yet another computer

will further augment performance, and so on. Distributed data processing works on this principle

and holds that a job gets done faster if multiple machines are handling it in parallel, or

synchronously.

Flexible

Individual computers that comprise a distributed network are present at different

geographical locations. For example, an organizational-distributed network comprising of three

computers can have each machine in a different branch. The three machines are interconnected

via the Internet and are able to process data in parallel, even while at different locations. This

32

makes distributed data-processing networks more flexible. The system is flexible also in terms of

increasing or decreasing processing power.

--
2.16. INFORMATION AND COMMUNICATION TECHNOLOGY

SYSTEM

 Information and communications technology (ICT) is an extensional term for information

technology (IT) that stresses the role of unified communications and the integration

of telecommunications (telephone lines and wireless signals) and computers, as well as

necessary enterprise software, middleware, storage, and audiovisual systems, that enable users to

access, store, transmit, and manipulate information.

ICT is technology that supports activities involving information. Such activities include

gathering, processing, storing and presenting data. Increasingly these activities also involve

collaboration and communication. Hence IT has become ICT: information and communication

technology.

The term ICT is also used to refer to the convergence of audiovisual and telephone

networks with computer networks through a single cabling or link system. There are large

economic incentives to merge the telephone network with the computer network system using a

single unified system of cabling, signal distribution, and management. ICT is an umbrella term

that includes any communication device, encompassing radio, television, cell phones, computer

and network hardware, satellite systems and so on, as well as the various services and appliance

with them such as video conferencing and distance learning.

ICT is a broad subject and the concepts are evolving. It covers any product that will store,

retrieve, manipulate, transmit, or receive information electronically in a digital form (e.g.,

personal computers, digital television, email, or robots). The different types of communication in

ICT include electronic mail, video conferencing, facsimile and telephone conferencing. ICT

communication deals with storage, retrieval transmission and manipulation of digital

information. ICT communication uses ICT devices to connect businesses, organizations and

individuals.

Electronic mail is the common form of electronic communication used for transmitting

and receiving digital information. Emails are essential in sending messages, pictures files and

other attachments. Firms and organizations use emails for business purposes and as a medium for

communication with employees, personnel and clients. Facsimile is another common means of

ICT communication used for sending messages over the telephone network. Modern fax

machines are digital, making it possible to send a message over a wireless connection. Faxes can

be sent over a wireless connection and received by the fax machine of the recipient.

https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Unified_communications
https://en.wikipedia.org/wiki/Telecommunications
https://en.wikipedia.org/wiki/Telephone
https://en.wikipedia.org/wiki/Enterprise_software
https://en.wikipedia.org/wiki/Middleware
https://en.wikipedia.org/wiki/Convergence_(telecommunications)
https://en.wikipedia.org/wiki/Telephone_network
https://en.wikipedia.org/wiki/Telephone_network
https://en.wikipedia.org/wiki/Computer_network

33

Video conferencing is the best communication medium when companies want to reach

different people across different time zones or countries. This medium uses a camera,

loudspeakers, Internet connections and microphone to connect different people at the same time.

The equipment used allows everyone to see, speak and listen to each other. Another type of ICT

communication is telephone conferencing. Phone conferences allow participants to listen to each

other. They are connected through a phone call using an option of conferencing. Participants

enter a unique code or number to bridge the call.

Useful concept of ICT

It depends on the local culture and the particular ICT available and how it is configured

and managed. The understanding, management and configuration of the available technology

might vary the concept of ICT from

 A collection of tools and devices used for particular tasks, eg, publishing, course

delivery, and transaction processing...

 An organised set of equipment (like a 'workshop') for working on information and

communication.

 Components of integrated arrangements of devices, tools, services and practices

that enable information to be collected, processed, stored and shared with others.

 Components in a comprehensive system of people, information and devices that

enables learning, problem solving and higher order collaborative thinking, that is,

ICT as key elements underpinning a (sharable) workspace.

--
2.17. CLIENT/SERVER ARCHITECTURE

 Client-Server architecture is an architectural deployment style that describes the

separation of functionality into layers with each segment being a tier that can be located on a

physically separate computer. They evolved through the component-oriented approach, generally

using platform specific methods for communication instead of a message-based approach.

This architecture has different usages with different applications. It can be used in web

applications and distributed applications. The strength in particular is when using this

architecture over distributed systems. In this course work, I will furthermore invest this through

the example of three-tier architecture in web applications.

Structure
 Using this architecture the software is divided into 3 different tiers: Presentation tier, Logic

tier, and Data tier. Each tier is developed and maintained as an independent tier.

 1-Presentation tier

http://en.wikipedia.org/wiki/Multitier_architecture
http://en.wikipedia.org/wiki/Component-based_software_engineering

34

This is the topmost level of the application. The presentation layer provides the

application’s user interface (UI). Typically, this involves the use of Graphical User

Interface for smart client interaction, and Web based technologies for browser-based

interaction. The presentation tier displays information related to such services as

browsing merchandise, purchasing, and shopping cart contents. It communicates with

other tiers by outputting results to the browser/client tier and all other tiers in the

network.

 2-Logic tier (called also business logic, data access tier, or middle tier)

The logic tier is pulled out from the presentation tier and, as its own layer; it

controls an application’s functionality by performing detailed processing. Logic tier is

where mission-critical business problems are solved. The components that make up this

layer can exist on a server machine, to assist in resource sharing. These components can

be used to enforce business rules, such as business algorithms and legal or governmental

regulations, and data rules, which are designed to keep the data structures consistent

within either specific or multiple databases. Because these middle-tier components are

not tied to a specific client, they can be used by all applications and can be moved to

different locations, as response time and other rules require.

 3-Data tier

This tier consists of database servers, is the actual DBMS access layer. It can be

accessed through the business services layer and on occasion by the user services layer.

Here information is stored and retrieved. This tier keeps data neutral and independent

from application servers or business logic. Giving data its own tier also improves

scalability and performance. This layer consists of data access components (rather than

raw DBMS connections) to aid in resource sharing and to allow clients to be configured

without installing the DBMS libraries and ODBC drivers on each client.

The basic characteristics of client/server architectures are:

 Combination of a client or front-end portion that interacts with the user, and a server

or back-end portion that interacts with the shared resource. The client process

contains solution-specific logic and provides the interface between the user and the rest

of the application system. The server process acts as a software engine that manages

shared resources such as databases, printers, modems, or high powered processors.

 The front-end task and back-end task have fundamentally different requirements for

computing resources such as processor speeds, memory, disk speeds and capacities, and

input/output devices.

 The environment is typically heterogeneous and multivendor. The hardware platform

and operating system of client and server are not usually the same.Client and server

processes communicate through a well-defined set of standard application program

interfaces (API's) and RPC's.

http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/World_Wide_Web
http://ecomputernotes.com/fundamental/input-output-and-memory/what-is-a-printer-and-what-are-the-different-types-of-printers
http://ecomputernotes.com/fundamental/input-output-and-memory/list-various-input-and-output-devices
http://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system

35

 An important characteristic of client-server systems is scalability. They can be scaled

horizontally or vertically. Horizontal scaling means adding or removing client

workstations with only a slight performance impact. Vertical scaling means migrating to

a larger and faster server machine or multi servers.

--
2.18. LET US SUM UP

 In this unit, you have learnt about the architecture of DBMS, DDL & DML, Database

administrator & Database manager, data dictionary and distributed Processing. This knowledge

would make you understand the three level architecture of DBMS, various languages used in

database development, the players participated in database system management and the concept

of ICT placed in database. Thus, the database system architecture unit would have brought you

to closer to know the concept of database systems architecture and players of database

management.

--
2.19. UNIT – END QUESTIONS

1. Discuss about the three level architecture of DBMS.

2. Describe about the use of DDL and DML in detail.

3. Write about the role of database administrator & manager in DBMS.

--
2.20. ANSWER TO CHECK YOUR PROGRESS

1. DBMS architecture helps in design, development, implementation, and maintenance of a

database. A database stores critical information for a business. Selecting the correct database

architecture helps in quick and secure access to this data. There are mainly three levels of

data abstraction: 1. Internal Level: Actual PHYSICAL storage structure and access paths, 2.

Conceptual or Logical Level: Structure and constraints for the entire database, 3. External or

View level: Describes various user views.

2. Data Definition language (DDL) in DBMS with Examples: Data Definition Language can be

defined as a standard for commands through which data structures are defined. It is a

computer language that used for creating and modifying the structure of the database objects,

such as schemas, tables, views, indexes, etc. Additionally, it assists in storing the metadata

36

details in the database. Data Manipulation Language (DML) can be defined as a set of syntax

elements that are used to manage the data in the database. The commands of DML are not

auto-committed and modification made by them is not permanent to the database. It is a

computer programming language that is used to perform select, insert, delete and update data

in a database. The user requests are assisted by Data Manipulation Language. This language

is responsible for all forms of data modification in a database.

3. The data manager is the central software component of the DBMS. It is sometimes referred

to as the database control system. One of the functions of the data manager is to convert

operations in the user’s queries coming directly via the query processor or indirectly via an

application program from user’s logical view to a physical file system. The data manager is

responsible for interfacing with the file system. DBA administers the three levels of database

and consultation with the overall user community, sets up the definition of the global view of

the various users and applications and is responsible the definition and implementation of the

internal level, including the storage structure and access methods to be used for the optimum

performance of the DBMS. DBA is responsible for granting permission to the users of the

database and stores the profile of each user in the database.

37

--
UNIT III – DATABASE MODELS AND IMPLEMENTATION

Structure

UNIT III – DATABASE MODELS AND IMPLEMENTATION
3.1. Introduction

3.2. Objective

3.3. Data Model and Types of Data

3.3.1. Relational Data Model

3.3.2. Hierarchical Model

3.3.3. Network Data Model

3.3.4. Object / Relational Model

3.3.5. Object-Oriented Model

3.3.6. Entity-Relationship Model

 3.3.6.1. Modeling using E-R Diagrams

 3.3.6.2. Notation used in E-R Model

3.3.7. Relationships and relationship Types

3.3.8. Associative database Model

3.4. Let Us Sum Up

3.5. Unit – End Exercises

3.6. Answer to Check Your Progress

--
3.1. INTRODUCTION

In this lesson you will be aware with the various data models used to construct the simple

database systems. These elements include the various data models like relational data model,

Hierarchical model, network data model, object relational model, object oriented model, ER

model and associative database model. These elements are used to construct more

comprehensive database system. Some of the elements need very detailed information; however,

the purpose of this type of data models is to introduce certain.

--
3.2. OBJECTIVES

After going through this lesson you would be in a positions to

 Various database models used in DBMS.

38

 Entity-Relationship Model and its notations.

 Define relationship and types of relationship.

--
3.3. DATA MODEL AND TYPES OF DATA

 Data modeling is the process of creating a data model for the data to be stored in a

Database. This data model is a conceptual representation of

 Data objects

 The associations between different data objects

 The rules.

Data modeling helps in the visual representation of data and enforces business rules,

regulatory compliances, and government policies on the data. Data Models ensure consistency in

naming conventions, default values, semantics, and security while ensuring quality of the data.

Data model emphasizes on what data is needed and how it should be organized instead of

what operations need to be performed on the data. Data Model is like architect's building plan

which helps to build a conceptual model and set the relationship between data items.

3.3.1. Relational Data Model

 The relational model represents the database as a collection of relations. A relation is

nothing but a table of values. Every row in the table represents a collection of related data values.

These rows in the table denote a real-world entity or relationship.

The table name and column names are helpful to interpret the meaning of values in each

row. The data are represented as a set of relations. In the relational model, data are stored as

tables. However, the physical storage of the data is independent of the way the data are logically

organized.

Relational Model Concepts

1. Attribute: Each column in a Table. Attributes are the properties which define a relation.

e.g., Student_Rollno, NAME,etc.

2. Tables – In the Relational model the, relations are saved in the table format. It is stored

along with its entities. A table has two properties rows and columns. Rows represent

records and columns represent attributes.

3. Tuple – It is nothing but a single row of a table, which contains a single record.

4. Relation Schema: A relation schema represents the name of the relation with its

attributes.

5. Degree: The total number of attributes which in the relation is called the degree of the

relation.

39

6. Cardinality: Total number of rows present in the Table.

7. Column: The column represents the set of values for a specific attribute.

8. Relation instance – Relation instance is a finite set of tuples in the RDBMS system.

Relation instances never have duplicate tuples.

9. Relation key - Every row has one, two or multiple attributes, which is called relation key.

10. Attribute domain – Every attribute has some pre-defined value and scope which is known

as attribute domain

Operations in Relational Model

Four basic update operations performed on relational database model are,

Insert, update, delete and select.

 Insert is used to insert data into the relation

 Delete is used to delete tuples from the table.

 Modify allows you to change the values of some attributes in existing tuples.

 Select allows you to choose a specific range of data.

Constraints

Every relation has some conditions that must hold for it to be a valid relation. These

conditions are called Relational Integrity Constraints. There are three main integrity constraints,

 Key constraints

 Domain constraints

 Referential integrity constraints

 Key Constraints

There must be at least one minimal subset of attributes in the relation, which can

identify a tuple uniquely. This minimal subset of attributes is called key for that relation.

If there are more than one such minimal subsets, these are called candidate keys.

 Domain Constraints

Attributes have specific values in real-world scenario. For example, age can only

be a positive integer. The same constraints have been tried to employ on the attributes of

a relation. Every attribute is bound to have a specific range of values. For example, age

cannot be less than zero and telephone numbers cannot contain a digit outside 0-9.

 Referential integrity Constraints

Referential integrity constraints work on the concept of Foreign Keys. A foreign

key is a key attribute of a relation that can be referred in other relation.

Referential integrity constraint states that if a relation refers to a key attribute of a

different or same relation, then that key element must exist.

3.3.2. Hierarchical Model

 A hierarchical model represents the data in a tree-like structure in which there is a single

parent for each record. To maintain order there is a sort field which keeps sibling nodes into a

40

recorded manner. These types of models are designed basically for the early mainframe

database management systems, like the Information Management System (IMS) by IBM.

This model structure allows the one-to-one and a one-to-many relationship between two/

various types of data. This structure is very helpful in describing many relationships in the real

world; table of contents, any nested and sorted information.

The hierarchical structure is used as the physical order of records in storage. One can

access the records by navigating down through the data structure using pointers which are

combined with sequential accessing. Therefore, the hierarchical structure is not suitable for

certain database operations when a full path is not also included for each record.

Data in this type of database is structured hierarchically and is typically developed as an

inverted tree. The "root" in the structure is a single table in the database and other tables act as

the branches flowing from the root. The diagram below shows a typical hierarchical database

structure.

Figure 9: - Hierarchical Data Model

A user can access the data by starting at the root table and working down through the tree

to the target data. the user must be familiar with the structure of the database to access the data

without any complexity.

Advantages

1. A user can retrieve data very quickly due to the presence of explicit links between the

table structures.

2. The referential integrity is built in and automatically enforced due to which a record in a

child table must be linked to an existing record in a parent table, along with that if a

record deleted in the parent table then that will cause all associated records in the child

table to be deleted as well.

41

Disadvantages

1. When a user needs to store a record in a child table that is currently unrelated to any

record in a parent table, it gets difficulty in recording and user must record an additional

entry in the parent table.

2. This type of database cannot support complex relationships, and there is also a problem

of redundancy, which can result in producing inaccurate information due to the

inconsistent recording of data at various sites.

3.3.3. Network Data Model

The Network model replaces the hierarchical tree with a graph thus allowing more

general connections among the nodes. The main difference of the network model from the

hierarchical model, is its ability to handle many to many (N:N) relations. In other words, it

allows a record to have more than one parent. Suppose an employee works for two departments.

The strict hierarchical arrangement is not possible here and the tree becomes a more generalized

graph - a network. The network model was evolved to specifically handle non-hierarchical

relationships. As shown below data can belong to more than one parent. Note that there are

lateral connections as well as top-down connections. A network structure thus allows 1:1 (one:

one), l: M (one: many), M: M (many: many) relationships among entities.

Figure 10: - Example of Network Model

In network database terminology, a relationship is a set. Each set is made up of at least

two types of records: an owner record (equivalent to parent in the hierarchical model) and a

member record (similar to the child record in the hierarchical model).

The database of Customer-Loan, which we discussed earlier for hierarchical model, is

now represented for Network model as shown.

http://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms

42

In can easily depict that now the information about the joint loan L1 appears single time,

but in case of hierarchical model it appears for two times. Thus, it reduces the redundancy and is

better as compared to hierarchical model.

The network model has the following major features:

1. It can represent redundancy in data more efficiently than that in the hierarchical model.

2. There can be more than one path from a previous node to successor node/s.

3. The operations of the network model are maintained by indexing structure of linked list

(circular) where a program maintains a current position and navigates from one record to

another by following the relationships in which the record participates.

4. Records can also be located by supplying key values.

Advantages

1. Fast data access.

2. It also allows users to create queries that are more complex than those they created using

a hierarchical database. So, a variety of queries can be run over this model.

Disadvantages

1. A user must be very familiar with the structure of the database to work through the set

structures.

2. Updating inside this database is a tedious task. One cannot change a set structure without

affecting the application programs that use this structure to navigate through the data. If

you change a set structure, you must also modify all references made from within the

application program to that structure.

3.3.4. Object / Relational Model

An Object relational model is a combination of a Object oriented database model and a

Relational database model. So, it supports objects, classes, inheritance etc. just like Object

Oriented models and has support for data types, tabular structures etc. like Relational data

model.

One of the major goals of Object relational data model is to close the gap between

relational databases and the object oriented practices frequently used in many programming

languages such as C++, C#, Java etc.

History of Object Relational Data Model

Both Relational data models and Object oriented data models are very useful. But it was

felt that they both were lacking in some characteristics and so work was started to build a model

that was a combination of them both. Hence, Object relational data model was created as a result

of research that was carried out in the 1990’s.

Advantages of Object Relational model

The advantages of the Object Relational model are:

Inheritance

http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

43

The Object Relational data model allows its users to inherit objects, tables etc. so that

they can extend their functionality. Inherited objects contain new attributes as well as the

attributes that were inherited.

Complex Data Types
Complex data types can be formed using existing data types. This is useful in Object

relational data model as complex data types allow better manipulation of the data.

Extensibility
The functionality of the system can be extended in Object relational data model. This can

be achieved using complex data types as well as advanced concepts of object oriented model

such as inheritance.

Disadvantages of Object Relational model

The object relational data model can get quite complicated and difficult to handle at

times as it is a combination of the Object oriented data model and Relational data model and

utilizes the functionalities of both of them.

3.3.5. Object-Oriented Model

Object oriented data model is based upon real world situations. These situations are represented

as objects, with different attributes. These entire objects have multiple relationships between

them.

Elements of Object oriented data model

Objects
The real world entities and situations are represented as objects in the Object oriented

database model.

Attributes and Method
Every object has certain characteristics. These are represented using Attributes. The

behaviour of the objects is represented using Methods.

Class
Similar attributes and methods are grouped together using a class. An object can be called as an

instance of the class.

Inheritance
A new class can be derived from the original class. The derived class contains attributes

and methods of the original class as well as its own.

The Components of the Object Oriented Data Model

 An object is an abstraction of a real-world entity. In general terms, an object may be

considered equivalent to an ER model’s entity. More precisely, an object represents only

one occurrence of an entity. (The object’s semantic content is defined through several of

the items in this list.)

 Attributes describe the properties of an object. For example, a PERSON object includes

the attributes Name, Social Security Number, and Date of Birth.

44

 Objects that share similar characteristics are grouped in classes. A class is a collection of

similar objects with shared structure (attributes) and behavior (methods). In a general

sense, a class resembles the ER model’s entity set. However, a class is different from an

entity set in that it contains a set of procedures known as methods. A class’s method

represents a real-world action such as finding a selected PERSON’s name, changing a

PERSON’s name, or printing a PERSON’s address. In other words, methods are the

equivalent of procedures in traditional programming languages. In OO terms, methods

define an object’s behavior.

 Classes are organized in a class hierarchy. The class hierarchy resembles an upside-down

tree in which each class has only one parent. For example, the CUSTOMER class and the

EMPLOYEE class share a parent PERSON class. (Note the similarity to the hierarchical

data model in this respect.)

 Inheritance is the ability of an object within the class hierarchy to inherit the attributes

and methods of the classes above it. For example, two classes, CUSTOMER and

EMPLOYEE, can be created as subclasses from the class PERSON. In this case,

CUSTOMER and EMPLOYEE will inherit all attributes and methods from PERSON.

Advantages of Object Oriented Data Model

1. Add semantic content

2. Visual presentation includes semantic content

3. Database integrity

4. Both structural and data independence

Disadvantages of Object Oriented Data Model

1. Lack of OODM standards

2. Complex navigational data access

3. Steep learning curve

4. High system overhead slows transactions

3.3.6. Entity-Relationship Model

 Entity Relationship Modeling (ER Modeling) is a graphical approach to database design.

It uses Entity/Relationship to represent real world objects.

An Entity is a thing or object in real world that is distinguishable from surrounding

environment. For example each employee of an organization is a separate entity. Following are

some of major characteristics of entities.

 An entity has a set of properties.

 Entity properties can have values.

The ER model defines the conceptual view of a database. It works around real-world

entities and the associations among them. At view level, the ER model is considered a good

option for designing databases.

45

Entity

An entity can be a real-world object, either animate or inanimate, that can be easily

identifiable. For example, in a school database, students, teachers, classes, and courses offered

can be considered as entities. All these entities have some attributes or properties that give them

their identity.

An entity set is a collection of similar types of entities. An entity set may contain entities

with attribute sharing similar values. For example, a Students set may contain all the students of

a school; likewise a Teachers set may contain all the teachers of a school from all faculties.

Entity sets need not be disjoint.

Attributes

Entities are represented by means of their properties, called attributes. All attributes have

values. For example, a student entity may have name, class, and age as attributes.

There exists a domain or range of values that can be assigned to attributes. For example,

a student's name cannot be a numeric value. It has to be alphabetic. A student's age cannot be

negative, etc.

Types of Attributes

 Simple attribute − Simple attributes are atomic values, which cannot be divided further..

 Composite attribute − Composite attributes are made of more than one simple attribute..

 Derived attribute − Derived attributes are the attributes that do not exist in the physical

database, but their values are derived from other attributes present in the database..

 Multi-value attribute − Multi-value attributes may contain more than one values.

These attribute types can come together in a way like −

 simple single-valued attributes

 simple multi-valued attributes

 composite single-valued attributes

 composite multi-valued attributes

3.3.6.1. Modeling using E-R Diagrams

 Entity relationship diagram displays the relationships of entity set stored in a database. In

other words, we can say that ER diagrams help you to explain the logical structure of databases.

At first look, an ER diagram looks very similar to the flowchart. However, ER Diagram includes

many specialized symbols, and its meanings make this model unique.

Facts about ER Diagram Model:

 ER model allows you to draw Database Design

 It is an easy to use graphical tool for modeling data

 Widely used in Database Design

 It is a GUI representation of the logical structure of a Database

 It helps you to identifies the entities which exist in a system and the relationships

between those entities

46

Why use ER Diagrams?

Here, are prime reasons for using the ER Diagram

 Helps you to define terms related to entity relationship modeling

 Provide a preview of how all your tables should connect, what fields are going to be on

each table

 Helps to describe entities, attributes, relationships

 ER diagrams are translatable into relational tables which allows you to build databases

quickly

 ER diagrams can be used by database designers as a blueprint for implementing data in

specific software applications

 The database designer gains a better understanding of the information to be contained in

the database with the help of ERP diagram

 ERD is allowed you to communicate with the logical structure of the database to users

Components of the ER Diagram

This model is based on three basic concepts:

 Entities

 Attributes

 Relationships

An entity can be place, person, object, event or a concept, which stores data in the database.

The characteristics of entities are must have an attribute, and a unique key. Every entity is made

up of some 'attributes' which represent that entity.

Relationship is nothing but an association among two or more entities. E.g., Tom works in

the Chemistry department.

It is a single-valued property of either an entity-type or a relationship-type. For example, a

lecture might have attributes: time, date, duration, place, etc. An attribute is represented by an

Ellipse

3.3.6.2. Notation used in E-R Model

 There is no standard for representing data objects in ER diagrams. Each modeling

methodology uses its own notation.

All notational styles represent entities as rectangular boxes and relationships as lines

connecting boxes. Each style uses a special set of symbols to represent the cardinality of

connection. The symbols used for the basic ER constructs are:

 Entities are represented by labeled rectangles. The label is the name of the entity. Entity

names should be singular nouns.

 Attributes are represented by Ellipses.

 A solid line connecting two entities represents relationships. The name of the relationship

is written above the line. Relationship names should be verbs and diamonds sign is used

to represent relationship sets.

47

 Attributes, when included, are listed inside the entity rectangle. Attributes, which are

identifiers, are underlined. Attribute names should be singular nouns.

 Multi-valued attributes are represented by double ellipses.

 Directed line is used to indicate one occurrence and undirected line is used to indicate

many occurrences in a relation.

The symbols used to design an ER diagram are shown.

Figure 11: - Symbol used for ER Diagram

3.3.7. Relationships and relationship Types

A relationship, in the context of databases, is a situation that exists between two relational

database tables when one table has a foreign key that references the primary key of the other

table. Relationships allow relational databases to split and store data in different tables, while

linking disparate data items.

There are 3 types of relationships in relational database design. They are:

 One-to-One

 One-to-Many (or Many-to-One)

 Many-to-Many

One-to-One Relationships

A pair of tables bears a one-to-one relationship when a single record in the first table is

related to only one record in the second table, and a single record in the second table is related

to only one record in the first table.

https://database.guide/what-is-a-relationship/

48

One-to-Many Relationships

A one-to-many relationship exists between a pair of tables when a single record in the

first table can be related to one or more records in the second table, but a single record in the

second table can be related to only one record in the first table.

Many-to-Many Relationships

A pair of tables bears a many-to-many relationship when a single record in the first table

can be related to one or more records in the second table and a single record in the second table

can be related to one or more records in the first table.

3.3.8. Associative database Model

 The associative model of data is a data model for database systems. Other data models,

such as the relational model and the object data model, are record-based. These models involve

encompassing attributes about a thing, such as a car, in a record structure. Such attributes might

be registration, colour, make, model, etc. In the associative model, everything which has

“discrete independent existence” is modeled as an entity, and relationships between them are

modeled as associations.

Associative model has a division property; this divides the real world things about which

data is to be recorded in two sorts i.e. between entities and associations. Thus, this model does

the division for dividing the real world data to the entities and associations.

The Associative data model is a model for databases unlike any of those we spoke of in

prior articles. Unlike the relational model, which is record based and deals with entities and

attributes, this model works with entities that have a discreet independent existence, and their

relationships are modeled as associations.

The Associative model was bases on a subject-verb-object syntax with bold parallels in

sentences built from English and other languages.

The Associative database had two structures, there are a set of items and a set of links

that are used to connected them together. With the item structure the entries must contain a

unique indication, a type, and a name. Entries in the links structure must also have a unique

indicator along with indicators for the related source, subject, object, and verb.

How the Associative Data is Model different?

The Associative model structure is efficient with the storage room fore there is no need to

put aside existing space for the data that is not yet available. This differs from the relational

model structure. With the relational model the minimum of a single null byte is stored for

missing data in any given row. Also some relational databases set aside the maximum room for a

specified column in each row.

The Associative database creates storage of custom data for each user, or other needs

clear cut and economical when considering maintenance or network resources. When different

data needs to be stored the Associative model is able to manage the task more effectively then

the relational model.

https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Relational_model

49

With the Associative model there are entities and associations. The entity is identified as

discrete and has an independent existence, where as the association depends on other things.

The Associative model is designed to store metadata in the same structures where the

data itself is stored. This metadata describes the structure of the database and the how different

kinds of data can interconnect. Simple data structures need more to transport a database

competent of storing the varying of data that a modernized business requires along with the

protection and managements that is important for internet implementation.

The Associative model is built from chapters and the user’s view the content of the

database is controlled by their profile. The profile is a list of chapters. When some links between

items in the chapters inside as well as outside of a specific profile exist, those links will not be

visible to the user.

--
3.4. LET US SUM UP

 In this unit, you have learnt about the various data model and types of data used in

database system development and implementation. This knowledge would make you understand

the data models used in database management system such as network model. Hierarchical

model, object oriented model, object relational model and relationship of data. Thus, the data

models and implementation unit would have brought you to closer to know the concept of data

models to represent the data database management system.

--
3.5. UNIT – END QUESTIONS

1. Identify the various data models used in DBMS.

2. Analyze the use of ER Model in Database design.

--
3.6. ANSWER TO CHECK YOUR PROGRESS

1. Data modeling is the process of creating a data model for the data to be stored in a Database.

The relational model represents the database as a collection of relations. A relation is nothing

but a table of values. Every row in the table represents a collection of related data values.

These rows in the table denote a real-world entity or relationship. A hierarchical model

represents the data in a tree-like structure in which there is a single parent for each record.

The Network model replaces the hierarchical tree with a graph thus allowing more general

50

connections among the nodes. An Object relational model is a combination of a Object

oriented database model and a Relational database model. Object oriented data model is

based upon real world situations. These situations are represented as objects, with different

attributes.

2. Entity Relationship Modeling (ER Modeling) is a graphical approach to database design. It

uses Entity/Relationship to represent real world objects. An entity can be a real-world object,

either animate or inanimate, that can be easily identifiable. An entity set is a collection of

similar types of entities. An entity set may contain entities with attribute sharing similar

values. Entities are represented by means of their properties, called attributes. All attributes

have values. Entity relationship diagram displays the relationships of entity set stored in a

database. All notational styles represent entities as rectangular boxes and relationships as

lines connecting boxes. Each style uses a special set of symbols to represent the cardinality of

connection. A relationship, in the context of databases, is a situation that exists between two

relational database tables when one table has a foreign key that references the primary key of

the other table.

51

--
UNIT IV – FILE ORGANIZATION AND CONVENTIONAL

DBMS

Structure

UNIT IV – FILE ORGANIZATION FOR CONVENTIONAL DBMS
4.1. Introduction

4.2. Objective

4.3. Storage Devices and its Characteristics

4.3.1. Magnetic Disks

4.3.2. Physical Characteristics of Disks

4.3.3. Performance Measures of Disks

4.3.4. Optimization of Disk-Block Access

4.4. File Organization

4.4.1. Fixed-Length Records

4.4.2. Variable-Length Records

4.4.3. Organization of records in files

4.4.4. Sequential file Organization

4.4.5. Indexed Sequential Access Method (ISAM)

4.4.6. Virtual Storage Access Method (VSAM)

4.5. Let Us Sum Up

4.6. Unit – End Exercises

4.7. Answer to Check Your Progress

--
4.1. INTRODUCTION

In this lesson you will be aware with the various storage devices and its characteristics

used for database storage and file organisation mechanism of DBMS. These device

characteristics and file mechanism include the magnetic disk and its performances and various

types of file organisation used in various devices.

--
4.2. OBJECTIVES

After going through this lesson you would be in a positions to

52

 Storage devices and its characteristics.

 Recognize the performances of storage devices.

 Define files, file organisations and representation.

--
4.3. STORAGE DEVICES AND CHARACTERISTICS

 Databases are stored in file formats, which contain records. At physical level, the actual

data is stored in electromagnetic format on some device. These storage devices can be broadly

categorized into three types –

Figure 12: - Storage Devices

 Primary Storage − The memory storage that is directly accessible to the CPU comes

under this category. CPU's internal memory (registers), fast memory (cache), and main

memory (RAM) are directly accessible to the CPU, as they are all placed on the

motherboard or CPU chipset. This storage is typically very small, ultra-fast, and volatile.

Primary storage requires continuous power supply in order to maintain its state. In case

of a power failure, all its data is lost.

 Secondary Storage − Secondary storage devices are used to store data for future use or

as backup. Secondary storage includes memory devices that are not a part of the CPU

chipset or motherboard, for example, magnetic disks, optical disks (DVD, CD, etc.),

hard disks, flash drives, and magnetic tapes.

 Tertiary Storage − Tertiary storage is used to store huge volumes of data. Since such

storage devices are external to the computer system, they are the slowest in speed. These

storage devices are mostly used to take the back up of an entire system. Optical disks

and magnetic tapes are widely used as tertiary storage.

53

Memory Hierarchy

A computer system has a well-defined hierarchy of memory. A CPU has direct access to

it main memory as well as its inbuilt registers. The access time of the main memory is

obviously less than the CPU speed. To minimize this speed mismatch, cache memory is

introduced. Cache memory provides the fastest access time and it contains data that is most

frequently accessed by the CPU.

The memory with the fastest access is the costliest one. Larger storage devices offer slow

speed and they are less expensive, however they can store huge volumes of data as compared to

CPU registers or cache memory.

4.3.1. Magnetic Disks

A magnetic disk is a storage device that uses a magnetization process to read, write,

rewrite and access data. It is covered with a magnetic coating and stores data in the form of

tracks, spots and sectors. Hard disks, zip disks and floppy disks are common examples

of magnetic disks.

Figure 13: - Magnetic Disk

4.3.2. Physical Characteristics of Disks

A magnetic disk primarily consists of a rotating magnetic surface and a mechanical arm

that moves over it. That mechanical arm is used to read from and write data to the disk. The data

on a magnetic disk is read and written using a magnetization process. Data is organized on the

disk in the form of tracks and sectors, where tracks are the circular divisions of the disk. Tracks

are further divided into sectors that contain blocks of data. All read & write operations on the

magnetic disk are performed on the sectors.

54

Magnetic disks have traditionally been used as primary storage in computers. But now

with the advent of solid-state drives (SSDs), Flash drives (Pendrive), External hard

disks..Magnetic disks are no longer considered the only option, but are still commonly used.

A. Magnetic Read and Write Mechanisms. Write head is has coils of wire around a gapped

rectangular doughnut.

Read head uses a partially shielded magneto resistive sensor made of ferromagnetic

materials.

B. Data Organization and Formatting.

1. Tracks = concentric rings on the platter, each the width of a head, and separated by the

intertrack gap.

2. Sectors = sections of tracks (512 bytes of data, recently 4K) separated by intersector gaps.

3. Tracks on the outside of the platter have a higher angular velocity than tracks closer to

the center.

a. Constant angular velocity layout has the same number of sectors on each track, so

outer ones are longer than inner ones. Advantage: easy to find sectors.

Disadvantage: Outer sectors have lower density than possible.

b. Multiple zoned layout has the number of sectors based on the circumference of

the tracks. Advantage: makes full use of the density possible, and thus more

storage capacity.

4. Formatting creates physical sectors (600 bytes) that also include IDs, CRC, and gaps to

help with synching.

C. Physical Characteristics

1. Heads: fixed head (one per track, obsolete), or moveable-head (one per surface) mounted

on an arm.

2. Non-removable disk (hard disk) or removable disk (floppy).

3. Single platter, or multiple (2 -10) platters on the same spindle.

4. Single sided, or double sided (usually).

5. Head Mechanisms: 1) contact, e.g. floppy; 2) fixed gap (traditional); and 3) aerodynamic

gap (Winchester) relies on foil head riding the air current produced by the spinning

platters to keep from touching them.

4.3.3. Performance Measures of Disks

1. Seek time = average time it takes to position a head over the correct track. 4-13ms. Zero

on fixed head drives.

2. Rotational delay = average time it takes a sector to reach the head. 7200 RPM = 4ms,

10000 RPM = 3 ms

3. Access time = seek time + rotational delay.

55

4. Transfer time = time to read or write one sector once it has reached the head, 100 -

300MB/s

4.3.4. Optimization of Disk-Block Access

1. Data is transferred between disk and main memory in units called blocks.

2. A block is a contiguous sequence of bytes from a single track of one platter.

3. Block sizes range from 512 bytes to several thousand.

4. The lower levels of file system manager covert block addresses into the hardware-level

cylinder, surface, and sector number.

5. Access to data on disk is several orders of magnitude slower than is access to data in

main memory. Optimization techniques besides buffering of blocks in main memory.

o Scheduling: If several blocks from a cylinder need to be transferred, we may save

time by requesting them in the order in which they pass under the heads. A

commonly used disk-arm scheduling algorithm is the elevator algorithm.

o File organization. Organize blocks on disk in a way that corresponds closely to

the manner that we expect data to be accessed. For example, store related

information on the same track, or physically close tracks, or adjacent cylinders in

order to minimize seek time. IBM mainframe OS's provide programmers fine

control on placement of files but increase programmer's burden.

UNIX or PC OSs hide disk organizations from users. Over time, a sequential file

may become fragmented. To reduce fragmentation, the system can make a back-

up copy of the data on disk and restore the entire disk. The restore operation

writes back the blocks of each file continuously (or nearly so). Some systems,

such as MS-DOS, have utilities that scan the disk and then move blocks to

decrease the fragmentation.

o Nonvolatile writes buffers. Use nonvolatile RAM (such as battery-back-up RAM)

to speed up disk writes drastically (first write to nonvolatile RAM buffer and

inform OS that writes completed).

o Log disk. Another approach to reducing write latency is to use a log disk, a disk

devoted to writing a sequential log. All access to the log disk is sequential,

essentially eliminating seek time, and several consecutive blocks can be written at

once, making writes to log disk several times faster than random writes.

--
4.4. FILE ORGANIZATION

 A file is a collection of or log of records. Having stored the records in a file it is

necessary to access these records using either a primary or secondary key. The type and

56

frequency of access required determines the type of file organization to be used for a given set of

records. A File is organized logically as a sequence of records. These records are mapped onto

disk blocks. Files are provided as a basic construct in operating systems, representing logical

data models in terms of files. Although blocks are of a fixed size determined by the physical

properties of the disk and by the operating system, record sizes vary. In a relational database,

tuples of distinct relations are generally of different sizes.

One approach to mapping the database to files is to use several files and to store records

of only one fixed length in any given file. An alternative is to structure our files so that we can

accommodate multiple lengths for records; however, files of fixed length records are easier to

implement than are files of variable length records. Many of the techniques used for the former

can be applied to the variable length case.

Storing the files in certain order is called file organization. The main objective of file

organization is

 Optimal selection of records i.e.; records should be accessed as fast as possible.

 Any insert, update or delete transaction on records should be easy, quick and should not

harm other records.

 No duplicate records should be induced as a result of insert, update or delete

 Records should be stored efficiently so that cost of storage is minimal.

There are various methods of file organizations. These methods may be efficient for

certain types of access/selection meanwhile it will turn inefficient for other selections.

Various methods have been introduced to Organize files. These particular methods have

advantages and disadvantages on the basis of access or selection. Some types of File

Organizations are:

 Sequential File Organization.

 Heap File Organization.

 Hash File Organization.

 B+ Tree File Organization.

 Clustered File Organization.

4.4.1. Fixed-Length Records

 As an example, let us consider a file of account records for our bank database .Each

record of this file is defined (in pseudo code) as:

type deposit = record

Account _number char (10);

Branch_name char (22);

Balance numeric (12, 2);

end

57

If we assume that each character occupies 1 byte and that numeric (12, 2) occupies 8

bytes, our account record is 40 bytes long. A simple approach is to use the first 40 bytes for the

first record, the next 40 bytes for the second record and so on.

However there are two main problems with this simple approach.

1. It is difficult to delete a record from this structure. The space occupied by the record to be

deleted must be filled with some other record of the file, or we must have a way of

marking deleted records so that they can be ignored.

2. Unless the block size happens to be a multiple of 40(which is unlikely), some records will

cross block boundaries. That is, part of the record will be stored in one block and part in

another. It would thus require two block accesses to read or write such a record.

When a record is deleted, we could move the record that came after it into the space formerly

occupied by the deleted record, and so on, until every record following the deleted record has

been moved ahead. Such an approach requires moving a large number of records. It might be

easier simply to move the final record of the file into the space occupied by the deleted record.

It is undesirable to move records to occupy the space freed by the deleted record, since

doing so requires additional block accesses. Since insertions tend to be more frequent than

deletions, it is acceptable to leave open the space occupied by the deleted record, and to wait for

a subsequent insertion before reusing the space. A simple marker on the deleted record is not

sufficient, since it is hard to find this available space when an insertion is being done. Thus we

need to introduce an additional structure.

At the beginning of the file, we allocate a certain number of bytes as a file header. The

header will contain a variety of information about the file.

For now, all we need to store there is the address of the first record whose contents are

deleted. We use this first record to store the address of the second available record, and so on.

Intuitively we can think of these stored addresses as pointers, since they point to the location of a

record. The deleted records thus form a linked list, which is often referred to as a free list.

On insertion of a new record, we use the record pointed to by the header. We change the

header pointer to point to the next available record. If no space is available, we add the new

record to the end of the file.

Insertion and deletion for files of fixed length records are simple to implement, because

the space made available by a deleted record is exactly the space needed to insert a record. If we

allow records of variable length in a file, this match no longer holds. An inserted record may not

fit in the space left free by a deleted record, or it may fill only part of that space.

4.4.2. Variable-Length Records

Variable length records arise in the database systems in several ways.

 Storage of multiple record types in a file

 Record types that allow variable lengths for one or more fields.

 Record types that allow repeating fields, such as arrays or multisets.

58

Different techniques for implementing variable length records exist.

The slotted page structure is commonly used for organizing records within a block. There

is a header at the beginning of each block, containing the following information.

1. The number of record entries in the header.

2. The end of free space in the block.

3. An array whose entries contain the location and size of each record.

The actual records are allocated contiguously in the block, starting from the end of the

block. The free space in the block is contiguous, between the final entry in the header array, and

the first record. If a record is inserted, space is allocated for it at the end of free space, and an

entry containing its size and location is added to the header.

If a record is deleted, the space that it occupies is freed, and its entry is set to deleted (its

size is set to -1, for example). Further the records in the block before the deleted records are

moved, so that the free space created by the deletion gets occupied, and all free space is again

between the final entry in the header array and the first record. The end of free space pointer in

the header is appropriately updated as well. Records can be grown or shrunk by similar

techniques, as long as there is space in the block. The cost of moving the records is not too high,

since the size of a block is limited: a typical value is 4 kilobytes.

The slotted page structure requires that there be no pointers that point directly to records.

Instead, pointers must point to the entry in the header that contains the actual location of the

record. This level of indirection allows records to be moved to prevent fragmentation of space

inside a block, while supporting indirect pointers to the record.

Databases often store data that can be much larger than a disk block .For instance, an

image or an audio recording may be multiple megabytes in size, while a video object may be

multiple gigabytes in size. Recall that SQL supports the types blob and clob, which store binary

and character large objects.

Most relational databases restrict the size of a record to be no larger than the size of a

block, to simplify buffer management and free space management. Large objects are often stored

in a special file (or collection of files) instead of being stored with the other (short) attributes of

records in which they occur. Large objects are often represented using B+ - tree file

organizations.

4.4.3. Organization of records in files

So far, we have studied how records are represented in a file structure. A relation is a set

of records. Given a set of records; the next question is how to organize them in a file. Several of

the possible ways of organizing records in files are:

 Heap File Organization: - Any record can be placed anywhere in the file where there is

space for a record. There is no ordering of records. Typically, there is a single file for

each relation.

59

 Sequential File: - Organization Records are stored in sequential order, according to the

value of a “search key” of each record.

 Hashing File Organization: - A hash function is computed on some other attribute of

each record. The result of the hash function specifies in which block of the file the record

should be placed.

4.4.4. Sequential file Organization

In a sequential file, records are maintained in the logical sequence of their primary key

values. The processing of a sequential file is conceptually simple but inefficient for random

access. A sequential file could be stored on a sequential storage device such as a magnetic tape.

Search for a given record in a sequential file requires, an average access to half the

records in the file. A binary or logarithmic search technique may also be used to search for a

record.

Updating usually requires the creation of a new file. To maintain file sequence records

are copied to the point where amendment is required. The changes are then made and copied to

the new file. Following this, the remaining records in the original file are copied to the new file,

thus creating an automatic back-up copy.

The basic advantage offered by a sequential file is the ease of access to the next record,

the simplicity of the organization and the absence of auxiliary data structures. To reduce the cost

per update, all updates are batched, sorted in order of sequential file and the file is updated in

single pass, such a file containing updates to be made to sequential file is sometimes referred to

as ‘Transaction File’

Thus a sequential file is designed for efficient processing of records in sorted order based

on some search key. A search key is any attribute or set of attributes; it need not be the primary

key, or even a super key. To permit fast retrieval of records in search key order, we chain

together records by pointers. The pointer in each record points to the next record in the search

order. Furthermore, to minimize the number of block accesses in sequential file processing, we

store records physically in search key order, or as close to search key order as possible.

The sequential file organization allows records to be read in sorted order, that can be

useful for display purposes as well as for certain query processing algorithms.

It is difficult, however to maintain physical sequential order as records are inserted and

deleted, since it is costly to move many records as a result of a single insertion or deletion. We

can manage deletion by using pointer chains, as we saw previously. For insertion, we apply the

following rules.

1. Locate the record in the file that comes before the record to be inserted in search key

order.

2. If there is a free record (that is, space left after a deletion) within the same block as this

record, insert the new record there. Otherwise, insert the new record in an overflow

60

block. In either case, adjust the pointers so as to chain together the records in search key

order.

4.4.5. Indexed Sequential Access Method (ISAM)

The retrieval of a record from a sequential file, on average, requires access to half the

records in the file, making such enquiries not only inefficient but very time consuming for large

file. To improve the query response time of a sequential file, a type of indexing technique can be

added.

An index is a set of pairs. Indexing associates a set of objects to a set of orderable

quantities, which are usually smaller in number or their properties, provide a mechanism for

faster search. The purpose of indexing is to expedite the search process.

‘Indexes created from a sequential (or sorted) set of primary keys are referred to as index

sequential’. Although the indices and the data blocks are held together physically, we distinguish

between them logically. We shall use the term index file to describe the indexes and data file to

refer to the data records. The index is usually small enough to be read into the processor

memory.

A sequential (or sorted on primary keys) file that is indexed is called an index sequential

file. The index provides for random access to records, while the sequential nature of the file

provides easy access to the subsequent records as well as sequential processing. An additional

feature of this file system is the overflow area. This feature provides additional space for record

addition without necessitating the creation of a new file.

In index sequential organization, it is the usual practice to have a hierarchy of indexes

with the lowest level index pointing to the records while the higher level ones point to the index

below them.

Updates to an index sequential file may entail modifications to the index in addition to

the file The index file can be simplified or its storage requirements reduced if only the address

part of the pair is held in the index. This however necessitates holding the address of every

possible key in the key range, including addresses of records not in file. The addresses of

nonexistent records can be set to an impossibly high or low value to indicate their absence from

the file. If the number of such missing records in the range of stored key values is small, the

saving obtained by not storing the key is considerable.

4.4.6. Virtual Storage Access Method (VSAM)

 Virtual Storage Access Method (VSAM) is high performance access method and data set

organization, which organizes and maintains data via a catalog structure. It utilizes virtual

storage concept and can protect datasets at various levels by giving passwords. VSAM can be

used in COBOL programs like physical sequential files. VSAM are the logical datasets for

storing records. Files can be read sequentially and randomly in VSAM. It is an improved way of

61

storing data which overcomes some of the limitations of conventional file systems like

Sequential Files.

Characteristics of VSAM

Following are the characteristics of VSAM −

 VSAM protects data against unauthorized access by using passwords.

 VSAM provides fast access to data sets.

 VSAM has options for optimizing performance.

 VSAM allows data set sharing in both batch and online environment.

 VSAM are more structured and organized in storing data.

 Free space is reused automatically in VSAM files.

Limitations of VSAM

The only limitation of VSAM is that it cannot be stored on TAPE volume. It is always

stored on DASD space. It requires a number of cylinders to store the data which is not cost-

effective.

VSAM consists of following components −

 VSAM Cluster.

 Control Area.

 Control Interval.

VSAM Cluster

VSAM are the logical datasets for storing records and are known as clusters. A cluster is

an association of the index, sequence set and data portions of the dataset. The space occupied by

a VSAM cluster is divided in contiguous areas called Control Intervals. We will discuss about

control intervals later in this module.

There are two main components in a VSAM cluster −

 Index Component contains the index part. Index records are present in Index component.

Using index component VSAM is able to retrieve records from the data component.

 Data Component contains the data part. Actual data records are present in Data

component.

Control Interval

Control Intervals (CI) in VSAM are equivalent to blocks for non-VSAM data sets. In

non-VSAM methods, the unit of data is defined by the block. VSAM works with logical data

area which is known as Control Intervals.

Control Intervals are the smallest unit of transfer between a disk and the operating

system. Whenever a record is retrieved directly from the storage, the entire CI containing the

record is read into VSAM Input-Output buffer. The desired record is then transferred to work

area from VSAM buffer.

Control Interval consists of −

 Logical Records.

 Control information fields.

62

 Free Space.

When a VSAM dataset is loaded, control intervals are created. The default Control Interval size

is 4K bytes and it can extend up to 32K bytes.

Control Area

A Control Area (CA) is formed by putting together two or more Control Intervals. A

VSAM dataset is composed of one or more Control Areas. The size of VSAM is always a

multiple of its Control Area. VSAM files are extended in units of Control Areas.

--
4.5. LET US SUM UP

 In this unit, you have learnt about the storage devices and various file organisation

mechanisms implemented in database management system. This knowledge would make you

understand the magnetic disk usage, characteristics and performance of device and various file

organisations like sequential file, hash file, heap file and organisation and clustered file also.

Thus, the file organisations for conventional DBMS unit would have brought you to closer to

know the concept of file organisation to represent the data in the database management system.

--
4.6. UNIT – END QUESTIONS

1. Examine the use of magnetic disk and its characteristics and performance.

2. Write about the various file organisation mechanisms in detail.

--
4.7. ANSWER TO CHECK YOUR PROGRESS

1. Databases are stored in file formats, which contain records. At physical level, the actual data

is stored in electromagnetic format on some device. These storage devices can be broadly

categorized into three types – Primary Storage, Secondary Storage and Tertiary Storage. A

magnetic disk is a storage device that uses a magnetization process to read, write, rewrite and

access data. It is covered with a magnetic coating and stores data in the form of tracks, spots

and sectors. Hard disks, zip disks and floppy disks are common examples of magnetic disks.

A magnetic disk primarily consists of a rotating magnetic surface and a mechanical arm that

moves over it. That mechanical arm is used to read from and write data to the disk. The data

on a magnetic disk is read and written using a magnetization process. Data is organized on

the disk in the form of tracks and sectors, where tracks are the circular divisions of the disk.

63

Tracks are further divided into sectors that contain blocks of data. All read & write

operations on the magnetic disk are performed on the sectors.

2. A file is a collection of or log of records. Having stored the records in a file it is necessary to

access these records using either a primary or secondary key. The type and frequency of

access required determines the type of file organization to be used for a given set of records.

A File is organized logically as a sequence of records. These records are mapped onto disk

blocks. Files are provided as a basic construct in operating systems, representing logical data

models in terms of files. Although blocks are of a fixed size determined by the physical

properties of the disk and by the operating system, record sizes vary. In a relational database,

tuples of distinct relations are generally of different sizes. Various methods have been

introduced to Organize files. These particular methods have advantages and disadvantages on

the basis of access or selection. Some types of File Organizations are: Sequential File

Organization, Heap File Organization, Hash File Organization, B+ Tree File Organization

and Clustered File Organization.

64

--
UNIT V – RELATIONAL DATABASE MANAGEMENT SYSTEM

Structure

UNIT V – RDBMS
5.1. Introduction

5.2. Objective

5.3. An informal look at the relational model

5.3.1. Relational Database Management System

5.3.2. RDBMS Properties

5.3.3. The Entity-Relationship Model

5.4. Overview of Relational Query Optimization

5.4.1. System Catalog in a Relational DBMS

5.4.2. Information stored in the System Catalog

5.4.3. How Catalogs are Stored

5.5. Let Us Sum Up

5.6. Unit – End Exercises

5.7. Answer to Check Your Progress

--
5.1. INTRODUCTION

 As an end in itself, understanding the relational database management system concepts

and terms is important to enable you learn more about database and relational database after the

course is over. Without understanding these concepts and terms, you will have difficulty

discussing relational DBMS ideas with others, and will have difficulty in reading the technical

literature. Since computer science is rapidly evolving new database concepts and since database

issues are important in many areas of computer science the ability to learn more quickly is

important to maintaining your technical edge.

--
5.2. OBJECTIVES

After going through this lesson you would be able to

 Define relational model and relational DBMS.

 Explain query optimization and system catalog.

65

--
5.3. AN INFORMAL LOOK AT THE RELATIONAL MODEL

 The relational model frees the user from the details of storage structures and access

methods. It is also conceptually simple and more importantly based on sound theoretical

principles that provide formal tools to tackle problems arising in database design and

maintenance.

 In this model, the relation is the only construct required to represent the associations

among the attributes of entity as well as relationships among different entities. One of the main

reasons for introducing this model was to increase the productivity of the application

programmer by eliminating the need to change application program when a change is made to

the database. Users need not know exact physical structures to use the database and are protected

from any changes made to these structures. They are however still required to know how the data

has been positioned into the various relations.

 Relational data model is the primary data model, which is used widely around the world

for data storage and processing. This model is simple and it has all the properties and

capabilities required to process data with storage efficiency.

Concepts

Tables − In relational data model, relations are saved in the format of Tables. This format stores

the relation among entities. A table has rows and columns, where rows represent records and

columns represent the attributes.

Tuple − A single row of a table, which contains a single record for that relation is called a tuple.

Relation instance − A finite set of tuples in the relational database system represents relation

instance. Relation instances do not have duplicate tuples.

Relation schema − A relation schema describes the relation name (table name), attributes, and

their names.

Relation key − Each row has one or more attributes, known as relation key, which can identify

the row in the relation (table) uniquely.

Attribute domain − Every attribute has some pre-defined value scope, known as attribute

domain.

5.3.1. Relational Database Management System

RDBMS stands for Relational Database Management System. RDBMS is the basis for

SQL, and for all modern database systems like MS SQL Server, IBM DB2, Oracle, MySQL, and

Microsoft Access.

A Relational database management system (RDBMS) is a database management system

(DBMS) that is based on the relational model as introduced by E. F. Codd.

66

A relational database refers to a database that stores data in a structured format,

using rows and columns. This makes it easy to locate and access specific values within the

database. It is "relational" because the values within each table are related to each other. Tables

may also be related to other tables. The relational structure makes it possible to

run queries across multiple tables at once.

While a relational database describes the type of database an RDMBS manages, the

RDBMS refers to the database program itself. It is the software that executes queries on the data,

including adding, updating, and searching for values. An RDBMS may also provide a visual

representation of the data. For example, it may display data in tables like a spreadsheet, allowing

you to view and even edit individual values in the table. Some RDMBS programs allow you to

create forms that can streamline entering, editing, and deleting data.

Most well known DBMS applications fall into the RDBMS category. Examples include

Oracle Database, MySQL, Microsoft SQL Server, and IBM DB2. Some of these programs

support non-relational databases, but they are primarily used for relational database management.

What is a table?

The data in an RDBMS is stored in database objects which are called as tables. This table

is basically a collection of related data entries and it consists of numerous columns and rows.

What is a field?

A field is a column in a table that is designed to maintain specific information about

every record in the table.

What is a Record or a Row?

A record is also called as a row of data is each individual entry that exists in a table.

What is a column?

A column is a vertical entity in a table that contains all information associated with a

specific field in a table.

What is a NULL value?

A NULL value in a table is a value in a field that appears to be blank, which means a

field with a NULL value is a field with no value.

It is very important to understand that a NULL value is different than a zero value or a

field that contains spaces. A field with a NULL value is the one that has been left blank during a

record creation.

5.3.2. RDBMS Properties

An RDBMS is easily accessible. You execute commands in them Structured Query

Language (SQL) to manipulate data. SQL is the international Standards Organization (ISO)

standard language for interacting with a RDBMS.

An RDBMS provides full data independence. The organization of the data is independent

of the applications that use it. You do not need to specify the access routes to tables or know how

data is physically arranged in a database.

https://techterms.com/definition/database
https://techterms.com/definition/row
https://techterms.com/definition/column
https://techterms.com/definition/table
https://techterms.com/definition/query
https://techterms.com/definition/program
https://techterms.com/definition/spreadsheet
https://techterms.com/definition/application

67

A relational database is a collection of individual, named objects. The basic unit of data

storage in a relational database is called a table. A table consists of rows and columns used to

store values. For access purpose, the order of rows and columns is insignificant. You can control

the access order as required.

When querying the database, you use conditional operations such as joins and

restrictions. A join combines data from separate database rows. A restriction limits the specific

rows returned by a query.

An RDBMS enables data sharing between users. At the same time, you can ensure

consistency of data across multiple tables by using integrity constraints. An RDBMS uses

various types of data integrity constraints. These types include entity, column, referential and

user- defined constraints. The constraint, entity, ensures uniqueness of rows, and the constraint

column ensures consistency of the type of data within a column. The other type, referential,

ensures validity of foreign keys, and user-defined constraints are used to enforce specific

business rules.

An RDBMS minimizes the redundancy of data. This means that similar data is not

repeated in multiple tables.

5.3.3. The Entity-Relationship Model

ER model stands for an Entity-Relationship model. It is a high-level data model. This

model is used to define the data elements and relationship for a specified system.

It develops a conceptual design for the database. It also develops a very simple and easy

to design view of data.

In ER modeling, the database structure is portrayed as a diagram called an entity-

relationship diagram.

ER models are readily translated to relations. ER models, also called an ER schema, are

represented by ER diagrams.

ER modelling is based on two concepts:

 Entities, defined as tables that hold specific information (data)

 Relationships, defined as the associations or interactions between entities

An entity is an object in the real world with an independent existence that can be differentiated

from other objects. An entity might be

 An object with physical existence (e.g., a lecturer, a student, a car)

 An object with conceptual existence (e.g., a course, a job, a position)

Entities can be classified based on their strength. An entity is considered weak if its tables are

existence dependent.

 That is, it cannot exist without a relationship with another entity

 Its primary key is derived from the primary key of the parent entity

An entity is considered strong if it can exist apart from all of its related entities.

 Kernels are strong entities.

68

 A table without a foreign key or a table that contains a foreign key that can contain

nulls is a strong entity

Another term to know is entity type which defines a collection of similar entities.

An entity set is a collection of entities of an entity type at a particular point of time. In an

entity relationship diagram (ERD), an entity type is represented by a name in a box.

--
5.4. OVERVIEW OF RELATIONAL QUERY OPTIMIZATION

 A query can be processed based on indexes and joins, The query optimizer uses these two

techniques to determine which process or expression to consider for evaluating the query.

Cost Based Optimization

 This is based on the cost of the query. The query can use different paths based on

indexes, constraints, sorting methods etc. This method mainly uses the statistics like record size,

number of records, number of records per block, number of blocks, table size, whether whole

table fits in a block, organization of tables, uniqueness of column values, size of columns etc.

Heuristic Optimization

 This method is also known as rule based optimization. This is based on the equivalence

rule on relational expressions; hence the number of combination of queries get reduces here.

Hence the cost of the query too reduces.

This method creates relational tree for the given query based on the equivalence rules. These

equivalence rules by providing an alternative way of writing and evaluating the query, gives the

better path to evaluate the query. This rule need not be true in all cases. It needs to be examined

after applying those rules. The most important set of rules followed in this method is listed

below:

 Perform all the selection operation as early as possible in the query. This should be first

and foremost set of actions on the tables in the query. By performing the selection

operation, we can reduce the number of records involved in the query, rather than using

the whole tables throughout the query.

 Perform all the projection as early as possible in the query. This is similar to selection but

will reduce the number of columns in the query.

 Next step is to perform most restrictive joins and selection operations. When we say most

restrictive joins and selection means, select those set of tables and views which will result

in comparatively less number of records. Any query will have better performance when

tables with few records are joined. Hence throughout heuristic method of optimization,

the rules are formed to get less number of records at each stage, so that query

performance is better. So is the case here too.

69

 Sometimes we can combine above heuristic steps with cost based optimization technique

to get better results.

5.4.1. System Catalog in a Relational DBMS

. The system catalogue is a collection of tables and views that contain important

information about a database. It is the place where a relational database management system

stores schema metadata, such as information about tables and columns, and internal bookkeeping

information. A system catalogue is available for each database.

Information in the system catalogue defines the structure of the database. For example,

the DDL (data dictionary language) for all tables in the database is stored in the system

catalogue.

Most system catalogues are copied from the template database during database creation,

and are thereafter database-specific. A few catalogues are physically shared across all databases

in an installation; these are marked in the descriptions of the individual catalogues.

The system catalogue for a database is actually part of the database. Within the database

are objects, such as tables, indexes, and views. The system catalogue is basically a group of

objects that contain information that defines other objects in the database, the structure of the

database itself, and various other significant information.

The system catalogue may be divided into logical groups of objects to provide tables that

are accessible by not only the database administrator, but by any other database user as well. A

user typically queries the system catalogue to acquire information on the user’s own objects and

privileges, whereas the DBA needs to be able to inquire about any structure or event within the

database. In some implementations, there are system catalogue objects that are accessible only to

the database administrator.

5.4.2. Information stored in the System Catalog

In database management systems, a file defines the basic organisation of a database. A

data dictionary contains a list of all the files in the database, the number of records in each file,

and the names and types of each field. Most database management systems keep the data

dictionary hidden from users to prevent them from accidentally destroying its contents.

The information stored in a catalogue of an RDBMS includes:

 The relation names,

 Attribute names,

 Attribute domains (data types),

 Descriptions of constraints (primary keys, secondary keys, foreign keys, NULL/ NOT

NULL, and other types of constraints),

 Views, and

 Storage structures and indexes (index name, attributes on which index is defined, type of

index etc).

Security and authorization information is also kept in the catalogue, which describes:

70

 Authorized user names and passwords,

 Each user’s privilege to access specific database relations and views,

 The creator and owner of each relation. The privileges are granted using GRANT

command.

The system catalogue can also be used to store some statistical and descriptive

information about relations. Some such information can be:

 Number of tuples in each relation,

 The different attribute values,

 Storage and access methods used in relation.

All such information finds its use in query processing. In relational DBMSs the catalogue

is stored as relations. The DBMS software is used for querying, updating, and maintaining the

catalogue. This allows DBMS routines (as well as users) to access. The information stored in the

catalogue can be accessed by the DBMS routines as well as users upon authorization with the

help of the query language such as SQL.

5.4.3. How Catalogs are Stored

 Hence, every database stores every information about its objects. These informations can

be it structure, definition, purpose, storage, number of columns and records, dependencies,

access rights, owner etc. Basically these are the useful information about the data in the database.

They are also called as metadata. These metadata are also stored as rows and columns of a table.

Collection of these metadata is stored in the data dictionary or system catalog. Usually, system

catalogs are accessed by the DBMS to perform various transactions and data dictionary has the

user accessible views that are accessed by the developers/ designers/ users.

It is a database about the database objects. It can exist in the same database or it can be

completely a separate database. If it is a separate database, then there should be a process to

update the table in system catalog as when object of the database changes. It should be in sync

with database objects. This helps the developer/ user to get the quick information about the

database objects.

System catalog also contains various tables and views. Since it contains the information

about the database objects, users are not allowed to modify the details in it. It is automatically

inserted/ updated/ deleted by the RDBMS. User has no access rights on them. But

users/developer will need to see the details in them to understand the objects. Sometimes

developer wants to know the exact column name and the table in which the records that he is

fetching exist. In these cases, he has to fetch in the data dictionary or system catalog. For this

purpose views on tables in the data dictionary are created and given SELECT rights to the users.

Data dictionary tables are created in the SYS schema and do not have any access privileges for

the user. Only the RDBMS access it. The views on these tables are created in SYSTEM schema

and users are given only SELCT rights. They cannot modify these views.

71

--
5.5. LET US SUM UP

 In this unit, you have learnt about the basic concepts of relational database and its

properties, and query optimization and system catalogs are discussed. This knowledge would

make you understand the difference between DBMS and RDBMS, elaborate the properties of

RDBMS, relational query optimization and system catalog strategies are identified. Thus, the

RDBMS unit would have brought you to closer to know the concept of relational database.

--
5.6. UNIT – END QUESTIONS

1. Describe about the concept of relational DBMS and its properties.

2. Discuss about the relational query optimization and system catalog in detail.

--
5.7. ANSWER TO CHECK YOUR PROGRESS

1. Relational data model is the primary data model, which is used widely around the world for

data storage and processing. This model is simple and it has all the properties and

capabilities required to process data with storage efficiency. RDBMS stands

for Relational Database Management System. RDBMS is the basis for SQL, and for all

modern database systems like MS SQL Server, IBM DB2, Oracle, MySQL, and Microsoft

Access.

A Relational database management system (RDBMS) is a database management system

(DBMS) that is based on the relational model as introduced by E. F. Codd. A relational

database refers to a database that stores data in a structured format, using rows and columns.

This makes it easy to locate and access specific values within the database. It is "relational"

because the values within each table are related to each other. Tables may also be related to

other tables. The relational structure makes it possible to run queries across multiple tables at

once.

2. A query can be processed based on indexes and joins, The query optimizer uses these two

techniques to determine which process or expression to consider for evaluating the query.

The query can use different paths based on indexes, constraints, sorting methods etc. This

method mainly uses the statistics like record size, number of records, number of records per

https://techterms.com/definition/database
https://techterms.com/definition/row
https://techterms.com/definition/column
https://techterms.com/definition/table
https://techterms.com/definition/query

72

block, number of blocks, table size, whether whole table fits in a block, organization of

tables, uniqueness of column values, size of columns etc.

The system catalogue is a collection of tables and views that contain important

information about a database. It is the place where a relational database management system

stores schema metadata, such as information about tables and columns, and internal

bookkeeping information. A system catalogue is available for each database.

73

--
UNIT VI – SQL - I

Structure

UNIT VI – SQL - I
6.1. Introduction

6.2. Objective

6.3. Categories of SQL Commands

6.3.1. Data Definition

6.3.2. Data Manipulation Statements

6.3.3. SELECT

6.3.3.1. The Basic Form

6.3.3.2. Sub Queries

6.4. Functions

6.5. GROUP BY Feature

6.6. Updating the Database

6.7. Data Definition Facilities

6.8. Let Us Sum Up

6.9. Unit – End Exercises

6.10. Answer to Check Your Progress

--
6.1. INTRODUCTION

 As you know by now, relational database is an new era for managing the data in effective

way. The queries are playing a vital role in database system and database management. In this

lesson, you have learnt about the categories of SQL commands, functions and various facilities

are identified. An SQL is a query language used for managing the relational data.

--
6.2. OBJECTIVES

After going through this lesson you will be in a position to

 Explain categories of SQL Commands.

 Define functions and updating the database.

 Define data definition facilities.

74

--
6.3. CATEGORIES OF SQL COMMANDS

 SQL is a language to operate databases; it includes database creation, deletion, fetching

rows, modifying rows, etc. SQL is an ANSI (American National Standards Institute) standard

language, but there are many different versions of the SQL language.

 SQL is Structured Query Language, which is a computer language for storing,

manipulating and retrieving data stored in a relational database. SQL is the standard language for

Relational Database System. All the Relational Database Management Systems (RDMS) like

MySQL, MS Access, Oracle, Sybase, Informix, Postgres and SQL Server use SQL as their

standard database language.

 When you are executing an SQL command for any RDBMS, the system determines the

best way to carry out your request and SQL engine figures out how to interpret the task. There

are various components included in this process. These components are –

 Query Dispatcher.

 Optimization Engines.

 Classic Query Engine.

 SQL Query Engine, etc.

A classic query engine handles all the non-SQL queries, but a SQL query engine won't handle

logical files.

SQL commands are instructions, coded into SQL statements, which are used to

communicate with the database to perform specific tasks, work, functions and queries with

data.

SQL commands can be used not only for searching the database but also to perform

various other functions like, for example, you can create tables, add data to tables, or modify

data, drop the table, set permissions for users. SQL commands are grouped into four major

categories depending on their functionality:

 Data Definition Language (DDL) - These SQL commands are used for creating,

modifying, and dropping the structure of database objects. The commands are

CREATE, ALTER, DROP, RENAME, and TRUNCATE.

 Data Manipulation Language (DML) - These SQL commands are used for storing,

retrieving, modifying, and deleting data.

These Data Manipulation Language commands are: SELECT, INSERT, UPDATE,

and DELETE.

https://beginner-sql-tutorial.com/sql-create-statement.htm
https://beginner-sql-tutorial.com/sql-select-statement.htm
https://beginner-sql-tutorial.com/sql-insert-statement.htm
https://beginner-sql-tutorial.com/sql-update-statement.htm
https://beginner-sql-tutorial.com/sql-delete-statement.htm

75

 Transaction Control Language (TCL) - These SQL commands are used for

managing changes affecting the data. These commands are COMMIT, ROLLBACK,

and SAVEPOINT.

 Data Control Language (DCL) - These SQL commands are used for providing

security to database objects. These commands are GRANT and REVOKE.

6.3.1. Data Definition

A data definition language (DDL) is a computer language used to create and modify the

structure of database objects in a database. These database objects include views, schemas,

tables, indexes, etc.

This term is also known as data description language in some contexts, as it describes the

fields and records in a database table.

The present database industry incorporates DDL into any formal language describing data.

However, it is considered to be a subset of SQL (Structured Query Language). SQL often uses

imperative verbs with normal English such as sentences to implement database modifications.

Hence, DDL does not show up as a different language in an SQL database, but does define

changes in the database schema.

Commonly used DDL in SQL querying are:

 CREATE: This command builds a new table and has a predefined syntax. The CREATE

statement syntax is CREATE TABLE [table name] ([column definitions]) [table

parameters]. CREATE TABLE Employee (Employee Id INTEGER PRIMARY KEY,

First name CHAR (50) NULL, Last name CHAR (75) NOT NULL).

Syntax: -

CREATE TABLE <table_name>

(column_name1 datatype,

 column_name2 datatype,

 .

 .

 .

 column_name_n datatype

);

For example,

CREATE TABLE employee

(

 empid INT,

 ename CHAR,

 age INT,

 city CHAR(25),

76

 phone_no VARCHAR(20)

);

 ALTER: An alter command modifies an existing database table. This command can add

up additional column, drop existing columns and even change the data type of columns

involved in a database table. An alter command syntax is ALTER object type object

name parameters. ALTER TABLE Employee ADD DOB Date.

Syntax: -

ALTER TABLE <table_name>

ADD <column_name datatype>; OR

ALTER TABLE <table_name>

CHANGE <old_column_name> <new_column_name>; OR

ALTER TABLE <table_name>

DROP COLUMN <column_name>;

For Example,

ALTER TABLE employee

ADD (address varchar2(50)); OR

ALTER TABLE employee

CHANGE (phone_no) (contact_no); OR

ALTER TABLE employee

DROP COLUMN age;

 DROP: A drop command deletes a table, index or view. Drop statement syntax is DROP

object type object name. DROP TABLE Employee.

Syntax: -

DROP TABLE <table_name>; OR

DROP DATABASE <database_name>;

For Example,

DROP TABLE employee; OR

DROP DATABASE employees;

6.3.2. Data Manipulation Statements

Data Manipulation Language commands to exercise data operations in the database. Data

operations can be populating the database tables with the application or business data, modifying

the data and removing the data from the database, whenever required. Besides the data

operations, there are set of commands which are used to control these operations. These

commands are grouped as Transaction Control Language.

There are three types of DML statements involved in a logical SQL transaction namely,

Insert, Update, Delete and Merge.

77

Data manipulation language (DML) is a core part of SQL. When you want to add, update,

or delete data in the database, you execute a DML statement. A collection of DML statements

that form a logical unit of work is called a transaction.

The statements you use to add, change, or delete data are called data manipulation statements,

which are a subset of the data manipulation language (DML) statements part of ANSI SQL.

The main DML statements are:

 INSERT statement Adds new rows to a table or view.

 UPDATE statement The UPDATE statement changes rows in a set of tables or views.

 DELETE statement The DELETE statement removes rows from a set of tables or views.

INSERT statement

The INSERT command is used to store data in tables. The INSERT command is often

used in higher-level programming languages

There are two different forms of the INSERT command. The first form is used if a new

row will have a value inserted into each column of the row. The second form of the INSERT

command is used to insert rows where some of the column data is unknown or defaulted from

business logic. This form of the INSERT command requires that you specify column names for

which data are being stored.

Syntax: -

 INSERT INTO table VALUES (column1 value, column2 value, ...);

UPDATE statement

The UPDATE command modifies the data stored in a column.It can update single or

multiple rows at a time depending on the result set filtered by conditions specified in WHERE

clause. Note that updating columns is different from altering columns. Earlier in this chapter,

you studied the ALTER command. The ALTER command changes the table structure, but

leaves the table data unaffected. The UPDATE command changes data in the table, not the table

structure.

Syntax: -

 UPDATE table SET column = value [, column = value ...][WHERE condition]

DELETE statement

The DELETE command is one of the simplest of the SQL statements. It removes one or

more rows from a table. Multiple table delete operations are not allowed in SQL.The syntax of

the DELETE command is as below.

 DELETE FROM table_name [WHERE condition];

6.3.3. SELECT

78

SQL is a comprehensive database language. SQL, pronounced Sequel or simply S-Q-L,

is a computer programming language used for querying relational databases following a

nonprocedural approach. When you extract information from a database using SQL, this is

termed querying the database.

A relational database is implemented through the use of a Relational Database

Management System (RDBMS). An RDBMS performs all the basic functions of the DBMS

software mentioned above along with a multitude of other functions that make the relational

model easier to understand and to implement. RDBMS users manipulate data through the use of

a special data manipulation language. Database structures are defined through the use of a data

definition language. The commands that system users execute in order to store and retrieve data

can be entered at a terminal with an RDBMS interface by typing the commands, or entered

through use of some type of graphical interface. The DBMS then processes the commands.

Capabilities of the SELECT Statement

Data retrieval from data base is done through appropriate and efficient use of SQL. Three

concepts from relational theory encompass the capability of the SELECT statement: projection,

selection, and joining.

 Projection: A project operation selects only certain columns (fields) from a table. The

result table has a subset of the available columns and can include anything from a single

column to all available columns.

 Selection: A select operation selects a subset of rows (records) in a table (relation) that

satisfy a selection condition. The ability to select rows from out of complete result set is

called Selection. It involves conditional filtering and data staging. The subset can range

from no rows, if none of the rows satisfy the selection condition, to all rows in a table.

 Joining: A join operation combines data from two or more tables based on one or more

common column values. A join operation enables an information system user to process

the relationships that exist between tables. The join operation is very powerful because it

allows system users to investigate relationships among data elements that might not be

anticipated at the time that a database is designed.

6.3.3.1. The Basic Form

 The SQL SELECT statement is used to fetch the data from a database table which

returns this data in the form of a result table. These result tables are called result-sets.

Syntax: -

The basic syntax of the SELECT statement is as follows −

 SELECT column1, column2, … columnN FROM table_name;

Here, column1, column2... are the fields of a table whose values you want to fetch. If you want

to fetch all the fields available in the field, then you can use the following syntax.

 SELECT * FROM table_name;

The SQL WHERE clause is used to specify a condition while fetching the data from a

single table or by joining with multiple tables. If the given condition is satisfied, then only it

79

returns a specific value from the table. You should use the WHERE clause to filter the records

and fetching only the necessary records.

The WHERE clause is not only used in the SELECT statement, but it is also used in the

UPDATE, DELETE statement, etc.,

6.3.3.2. Sub Queries

The most commonly used SQL command is SELECT statement. SQL SELECT statement

is used to query or retrieve data from a table in the database. A query may retrieve information

from specified columns or from all of the columns in the table. To create a simple SQL SELECT

Statement, you must specify the column(s) name and the table name. The whole query is called

SQL SELECT Statement.

Syntax: -

SELECT * | {[DISTINCT] column_list | expression [alias],...}

FROM table-name

[WHERE condition]

[GROUP BY columns]

[HAVING group-selection-condition]

[ORDER BY column-names || aliases || column-numbers];

 The SELECT clause is mandatory and carries out the relational project operation. The

FROM clause is also mandatory. It identifies one or more tables and/or views from

which to retrieve the column data displayed in a result table.

 The WHERE clause is optional and carries out the relational select operation. It specifies

which rows are to be selected.

 The GROUP BY clause is optional. It organizes data into groups by one or more column

names listed in the SELECT clause. The optional HAVING clause sets conditions

regarding which groups to include in a result table. The groups are specified by the

GROUP BY clause.

 The ORDER BY clause is optional. It sorts query results by one or more columns in

ascending or descending order.

For Example,
 SELECT * FROM CUSTOMERS WHERE ID IN (SELECT ID

 FROM CUSTOMERS

 WHERE SALARY > 4500)

--
6.4. FUNCTIONS

 SQL provides many built-in functions to perform operations on data. These functions are

useful while performing mathematical calculations, string concatenations, sub-strings etc.

80

A function is a database object in SQL Server. Basically, it is a set of SQL statements that accept

only input parameters, perform actions and return the result. A function can return an only a

single value or a table. We can’t use a function to Insert, Update, Delete records in the database

tables. Different Types of SQL Server & SQL Database Functions

System Defined Function

These functions are defined by SQL Server for a different purpose. We have two types of system

defined function in SQL Server

1. Scalar Function

Scalar functions operates on a single value and returns a single value. Below is the list of

some useful Sql Server Scalar functions.

 abs(-10.67)

This returns absolute number of the given number means 10.67.

 rand(10)

This will generate random number of 10 characters.

 round(17.56719,3)

This will round off the given number to 3 places of decimal means 17.567

 upper('dotnet')

This will returns upper case of given string means 'DOTNET'

 lower('DOTNET')

This will returns lower case of given string means 'dotnet'

 ltrim(' dotnet')

This will remove the spaces from left hand side of 'dotnet' string.

 convert(int, 15.56)

This will convert the given float value to integer means 15.

2. Aggregate Functions

SQL Server aggregate functions perform a calculation on a set of values and return a

single value. With the exception of the COUNT aggregate function, all other aggregate functions

ignore NULL values. Aggregate functions are frequently used with the GROUP BY clause of the

SELECT statement.

 AVG() - Returns the average value

 COUNT() - Returns the number of rows

 FIRST() - Returns the first value

 LAST() - Returns the last value

 MAX() - Returns the largest value

 MIN() - Returns the smallest value

 SUM() - Returns the sum

User Defined Function

These functions are created by the user in the system database or in the user-defined database.

There are three types of user-defined functions.

https://www.janbasktraining.com/blog/different-types-sql-server-sql-database-functions/

81

1. Scalar Function

User-defined scalar functions return a single data value of the type defined in the

RETURNS clause. For an inline scalar function, there is no function body; the scalar value is the

result of a single statement. For a multi-statement scalar function, the function body, defined in a

BEGIN...END block contains a series of Transact-SQL statements that return the single value.

The return type can be any data type except text, ntext, image, cursor, and timestamp.

2. Table-Valued Functions

User-defined table-valued functions return a table data type. For an inline table-valued

function, there is no function body; the table is the result set of a single SELECT statement.

Examples.

3. System Functions

SQL Server provides many system functions that you can use to perform a variety of

operations. They cannot be modified.

--
6.5. GROUP BY FEATURE

 The SQL GROUP BY clause is used in collaboration with the SELECT statement to

arrange identical data into groups. This GROUP BY clause follows the WHERE clause in a

SELECT statement and precedes the ORDER BY clause.

Syntax

The basic syntax of a GROUP BY clause is shown in the following code block. The

GROUP BY clause must follow the conditions in the WHERE clause and must precede the

ORDER BY clause if one is used.

SELECT column1, column2

FROM table_name

WHERE [conditions]

GROUP BY column1, column2

ORDER BY column1, column2

 "SELECT statements..." is the standard SQL SELECT command query.

 "GROUP BY column_name1" is the clause that performs the grouping based on

column_name1.

 "[,column_name2,...]" is optional; represents other column names when the grouping is

done on more than one column.

 "[HAVING condition]" is optional; it is used to restrict the rows affected by the GROUP

BY clause. It is similar to the WHERE clause.

82

Example

Consider the CUSTOMERS table is having the following records −

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

If you want to know the total amount of the salary on each customer, then the GROUP BY query

would be as follows.

SELECT NAME, SUM(SALARY) FROM CUSTOMERS GROUP BY NAME;

 The GROUP BY Clause is used to group rows with same values .

 The GROUP BY Clause is used together with the SQL SELECT statement.

 The SELECT statement used in the GROUP BY clause can only be used contain column

names, aggregate functions, constants and expressions.

 The HAVING clause is used to restrict the results returned by the GROUP BY clause.

--
6.6. UPDATING THE DATABASE

 Information stored in a database is unlikely to remain unchanged. When the source of

these changes is a dataset elsewhere, bulks updates must occur.

These updates may be as simple as reloading an entire set of data, totally replacing the

existing content. In some cases the table is restructured before reloading, in other cases the table

is truncated (emptied of its contents) but the structure left as before.

83

More complex updates involve processing individual records (leaving others untouched).

In some cases the entire record is replaced, in other cases only individual fields of a record are

updated.

The UPDATE statement changes existing data in one or more rows in a table. The

following illustrates the syntax of the UPDATE statement:

UPDATE table

SET

 column1 = new_value1,

 column2 = new_value2,

 ...

WHERE

 Condition;

To update data in a table, you need to:

 First, specify the table name that you want to change data in the UPDATE clause.

 Second, assign a new value for the column that you want to update. In case you want to

update data in multiple columns, each column = value pair is separated by a comma (,).

 Third, specify which rows you want to update in the WHERE clause.

The WHERE clause is optional. If you omit the WHERE clause, all rows in the table will

be updated.

The database engine issues a message specifying the number of affected rows after you execute

the statement.

For Example,

UPDATE employees

SET

 lastname = 'Hill'

WHERE

 employeeID = 3;

--
6.7. DATA DEFINITION FACILITIES

 A database language standard specifies the semantics of various components of a

database management system (DBMS). In particular, it defines the structures and operations of a

data model implemented by the DBMS, as well as other components that support data definition,

data access, security, programming language interface, and data administration. The SQL

https://zentut.com/sql-tutorial/sql-where/

84

standard specifies data definition, data manipulation, and other associated facilities of a DBMS

that supports the relational data model.

A database language standard is appropriate for all database applications where data will

be shared with other applications, where the life of the application is longer than the life of

current equipment, or where the application is to be understood and maintained by programmers

other than the original ones.

The basic structure of the relational model is a table, consisting of rows and columns.

Data definition includes declaring the name of each table to be included in a database, the names

and data types of all columns of each table, constraints on the values in and among columns, and

the granting of table manipulation privileges to prospective users. Tables can be accessed by

inserting new rows, deleting or updating existing rows, or selecting rows that satisfy a given

search condition for output. Tables can be manipulated to produce new tables by Cartesian

products, unions, intersections, joins on matching columns, or projections on given columns.

The SQL data definitions for creation of a table begin after the command to create them,

not in a separate screen panel or program. The SQL statement Create Table starts the processing

command. It is going to create the table name specified after the word “Table.” So following the

Create Table, you specify the schema / collection in which the table will be created, immediately

followed by the name of the table that is being created

--
6.8. LET US SUM UP

 In this unit, you have learnt about the categories of SQL commands and basic concepts of

predefined and user defined functions, and database updation. Thus, the SQL commands unit

would have brought you to closer to know the concept of database access and its working

principle.

--
6.9. UNIT – END QUESTIONS

1. Explain about the various categories of SQL Commands.

2. Write short notes on functions and GROUP BY feature of SQL.

3. How to updating the database using SQL.

85

--
6.10. ANSWER TO CHECK YOUR PROGRESS

1. SQL is a language to operate databases; it includes database creation, deletion, fetching rows,

modifying rows, etc. SQL is an ANSI (American National Standards Institute) standard

language, but there are many different versions of the SQL language. SQL is Structured

Query Language, which is a computer language for storing, manipulating and retrieving data

stored in a relational database. SQL is the standard language for Relational Database System.

All the Relational Database Management Systems (RDMS) like MySQL, MS Access,

Oracle, Sybase, Informix, Postgres and SQL Server use SQL as their standard database

language.

When you are executing an SQL command for any RDBMS, the system determines the best

way to carry out your request and SQL engine figures out how to interpret the task. There are

various components included in this process. These components are – Query Dispatcher,

Optimization Engines, Classic Query Engine, SQL Query Engine, etc.

A classic query engine handles all the non-SQL queries, but a SQL query engine won't

handle logical files.

2. SQL provides many built-in functions to perform operations on data. These functions are

useful while performing mathematical calculations, string concatenations, sub-strings etc.

A function is a database object in SQL Server. Basically, it is a set of SQL statements that

accept only input parameters, perform actions and return the result. A function can return an

only a single value or a table. We can’t use a function to Insert, Update, Delete records in the

database tables. Different Types of SQL Server & SQL Database Functions

The SQL GROUP BY clause is used in collaboration with the SELECT statement to arrange

identical data into groups. This GROUP BY clause follows the WHERE clause in a SELECT

statement and precedes the ORDER BY clause.

3. Information stored in a database is unlikely to remain unchanged. When the source of these

changes is a dataset elsewhere, bulks updates must occur.

These updates may be as simple as reloading an entire set of data, totally replacing the

existing content. In some cases the table is restructured before reloading, in other cases the

table is truncated (emptied of its contents) but the structure left as before.

https://www.janbasktraining.com/blog/different-types-sql-server-sql-database-functions/

86

--
UNIT VII – SQL - II

Structure

UNIT VII – SQL - II
7.1. Introduction

7.2. Objective

7.3. Views

7.4. Embedded SQL*

7.5. Declaring Variables and Exceptions

7.6. Embedding SQL Statements

7.7. Transaction Processing

7.8. Consistency and Isolation

7.9. Atomicity and Durability

7.10. Let Us Sum Up

7.11. Unit – End Exercises

7.12. Answer to Check Your Progress

--
7.1. INTRODUCTION

In this lesson you will be aware with the views. Embedded SQL*, transaction processing

and ACID properties of DBMS. These SQL elements and properties include the embedded SQL

statements and its variable creation and to study the ACID properties of database system like

consistency and isolation and atomicity and durability of database management system.

--
7.2. OBJECTIVES

After going through this lesson you will be in a position to

 Explain embedded SQL* statements.

 Define transaction processing and variables and exceptions of the database

system.

 Define ACID properties of the DBMS.

87

--
7.3. VIEWS

 A database view is a virtual table or logical table which is defined as a SQL SELECT

query with joins. Because a database view is similar to a database table, which consists of rows

and columns, so you can query data against it. Most database management systems, including

MySQL, allow you to detain the underlying tables through the database view with some

prerequisites. A database view is dynamic because it is not related to the physical schema. The

database system stores views as a SQL SELECT statement with joins. When the data of the

tables changes, the view reflects that changes as well.

A VIEW is a virtual table, through which a selective portion of the data from one or more

tables can be seen. Views do not contain data of their own. They are used to restrict access to the

database or to hide data complexity. A view is stored as a SELECT statement in the database.

DML operations on a view like INSERT, UPDATE, DELETE affects the data in the original

table upon which the view is based.

A view is nothing more than a SQL statement that is stored in the database with an

associated name. A view is actually a composition of a table in the form of a predefined SQL

query.

A view can contain all rows of a table or select rows from a table. A view can be created

from one or many tables which depend on the written SQL query to create a view.

Views, which are a type of virtual tables, allow users to do the following −

 Structure data in a way that users or classes of users find natural or intuitive.

 Restrict access to the data in such a way that a user can see and (sometimes) modify

exactly what they need and no more.

 Summarize data from various tables which can be used to generate reports.

Creating Views

Database views are created using the CREATE VIEW statement. Views can be created

from a single table, multiple tables or another view.

To create a view, a user must have the appropriate system privilege according to the

specific implementation.

The basic CREATE VIEW syntax is as follows −

CREATE VIEW view_name AS

SELECT column1, column2.....

FROM table_name

WHERE [condition];

http://www.mysqltutorial.org/mysql-select-statement-query-data.aspx
http://www.mysqltutorial.org/mysql-select-statement-query-data.aspx
http://www.mysqltutorial.org/mysql-inner-join.aspx
http://www.mysqltutorial.org/mysql-select-statement-query-data.aspx

88

 To include multiple tables in your SELECT statement in a similar way as you use them

in a normal SQL SELECT query.

For Example,

 CREATE VIEW CUSTOMERS_VIEW AS SELECT name, age FROM

CUSTOMERS;

Updating a View

A view can be updated under certain conditions which are given below −

 The SELECT clause may not contain the keyword DISTINCT.

 The SELECT clause may not contain summary functions.

 The SELECT clause may not contain set functions.

 The SELECT clause may not contain set operators.

 The SELECT clause may not contain an ORDER BY clause.

 The FROM clause may not contain multiple tables.

 The WHERE clause may not contain subqueries.

 The query may not contain GROUP BY or HAVING.

 Calculated columns may not be updated.

 All NOT NULL columns from the base table must be included in the view in order for

the INSERT query to function.

So, if a view satisfies all the above-mentioned rules then you can update that view.

Views are used for a number of reasons

 Performance - since the joins already made and the tables are virtual, it's quicker to

run a query on that dataset

 Security - users don't get access to the underlying tables and therefore can't mess up

your data. The view controls what columns and tables are available to the user

--
7.4. EMBEDDED SQL*

 Embedded SQL is the one which combines the high level language with the DB language

like SQL. It allows the application languages to communicate with DB and get requested result.

The high level languages which supports embedding SQLs within it are also known as host

language. There are different host languages which support embedding SQL within it like C,

C++, ADA, Pascal, FORTRAN, Java etc. When SQL is embedded within C or C++, then it is

known as Pro*C/C++ or simply Pro*C language. Pro*C is the most commonly used embedded

SQL. Let us discuss below embedded SQL with respect to C language.

89

 When SQL is embedded within C language, the compiler processes the compilation in

two steps. It first extracts all the SQL codes from the program and the pre-compiler will compile

the SQL code for its syntax, correctness, execution path etc. Once pre-compilation is done, these

executable codes are embedded into the C code. Then the C compiler will compile the code and

execute the code. Thus the compilation takes place in two steps – one for SQL and one for

application language. Hence these types of compilation require all the query, data value etc to be

known at the compilation time itself to generate the executable code. Otherwise C or any high

level language cannot compile the code. Hence the SQL codes written are static and these

embedded SQL is also known as static SQL. Thus SQLs know how to access DB, which queries

to execute, which values to be inserted/ deleted/updated etc.

 Structure of embedded SQL defines step by step process of establishing a connection

with DB and executing the code in the DB within the high level language.

Connection to DB

 This is the first step while writing a query in high level languages. First connection to the

DB that we are accessing needs to be established. This can be done using the keyword

CONNECT. But it has to proceed with ‘EXEC SQL’ to indicate that it is a SQL statement.

Declaration Section

 Once connection is established with DB, we can perform DB transactions. Since

these DB transactions are dependent on the values and variables of the host language. Depending

on their values, query will be written and executed. Similarly, results of DB query will be

returned to the host language which will be captured by the variables of host language. Hence we

need to declare the variables to pass the value to the query and get the values from query. There

are two types of variables used in the host language.

 Host variable: These are the variables of host language used to pass the value to the query

as well as to capture the values returned by the query. Since SQL is dependent on host

language we have to use variables of host language and such variables are known as host

variable. But these host variables should be declared within the SQL area or within SQL

code. That means compiler should be able to differentiate it from normal C variables.

Hence we have to declare host variables within BEGIN DECLARE and END DECLARE

section. Again, these declare block should be enclosed within EXEC SQL and ‘;’.

 Indicator Variable: These variables are also host variables but are of 2 byte short type

always. These variables are used to capture the NULL values that a query returns or to

INSERT/ UPDATE any NULL values to the tables. When it is used in a SELECT query,

it captures any NULL value returned for any column.

Execution Section

 This is the execution section, and it contains all the SQL queries and statements prefixed

by ‘EXEC SQL’.

90

--
7.5. DECLARING VARIABLES AND EXCEPTIONS

 Exceptions we learnt that there are three ways of declaring user-define exceptions in

Oracle Database. Declaring a user-define exception using Exception variable is a three step

process. These three steps are –

1. Declare a variable of exception datatype – This variable is going to take the entire

burden on its shoulders.

2. Raise the Exception – This is the part where you tell the compiler about the condition

which will trigger the exception.

3. Handle the exception – This is the last section where you specify what will happen

when the error which you raised will trigger.

Step 1: Declare a variable of Exception datatype
SQL variable you can declare an Exception variable in declaration section of the

anonymous as well as named PL/SQL block. This exception variable will then work as user-

define

DECLARE

 var_dividend NUMBER := 24;

 var_divisor NUMBER := 0;

 var_result NUMBER;

 ex_DivZero EXCEPTION;
In this declaration section we have 4 variables. Among these 4 variables first 3 are

normal Number datatype variables and the 4
th

 one which is ex_DivZero is the special

EXCEPTION datatype variable. This variable will become our User-Define Exception for this

program.

Step 2: Raise the Exception

The next step after declaring an Exception variable is to raise the exception. To raise the

exception in SQL we use Raise statement.

Raise statement is a special kind of SQL statement which changes the normal flow of

execution of the code. As soon as compiler comes across a raise condition it transfers the control

over to the exception handler.

BEGIN

 IF var_divisor = 0 THEN

 RAISE ex_DivZero;

 END IF

91

Here raise condition is accompanied with the IF-THEN condition. With the help of this

we can avoid unwanted switches during the control flow of the program. Using If Condition we

are making sure that this error will come into action only when the divisor is equal to 0.

Step 3: Handle the exception
That is the main section of the code. Here we write the logic for our user-define exception and

tell the compiler what it should do if and when that error occurs.

EXCEPTION WHEN ex_DivZero THEN

 DBMS_OUTPUT.PUT_LINE('Error Error - Your Divisor is Zero');

END;

/
Here we have the exception handler for the variable ex_DivZero. In the exception handling

section we have a DBMS OUTPUT statement which will get displayed when our user define

error which is ex_DivZero occurs.

--
7.6. EMBEDDING SQL STATEMENTS

Structured Query Language (SQL) is a standardized language that you can use to

manipulate database objects and the data that they contain. Despite differences between host

languages, embedded SQL applications are made up of three main elements that are required to

setup and issue an SQL statement.

The elements you must create when you write an embedded SQL application include:

 A DECLARE SECTION for declaring host variables. The declaration of the SQLCA

structure does not need to be in the DECLARE section.

 The main body of the application, which consists of the setup and execution of SQL

statements.

 Placements of logic that either commit or rollback the changes made by the SQL

statements.

The structured query language provides us 2 features:

 It allows us to write queries.

 It allows us to use it in programming languages so that

database can be accessed through application programs also.

There are many queries that are expressed in programming languages like C, C++,

Java but can’t be expressed in SQL. For writing such queries we need to embed

the SQL in general purpose programming languages. The mixture of SQL and

general purpose programming languages is called embedded SQL.

https://www.thecrazyprogrammer.com/2014/02/top-5-programming-languages-that-are-in-demand-by-employers.html

92

There are some special embedded SQL statements which are

used to retrieve the data into the program. There is a special SQL precompiler

that accepts the combined source code with other programming tools and converts

them into an executable program.

Concepts for Embedding the SQL Statements
We can mix the SQL statements directly into general purpose

programming language like C, Java or Pascal. There are some techniques to embed

SQL statements in the programming languages.

 The programming language in which the SQL statements are

embedded is called the host language. The SQL statements and host language

statements make the source program which is fed to a SQL precompiler for

processing the SQL statements.

 The host programming languages variables can be referenced

in the embedded SQL statements, which allows values calculated by the programs

to be used by SQL statements.

 There are some special program variables which are used to

assign null values to database columns. These program variables support the

retrieval of null values from the database.

Embedded SQL Program Development

Since the embedded SQL is a mixture of SQL and programming

language, so it cannot be fed directly to a general purpose programming

language compiler. Actually the program execution is a multi-step which is as

follows.

 First, the embedded SQL source code is fed to the SQL

precompiler. The precompiler scans the program and processes the embedded SQL

statements present in the code. There can be different precompiler for

different type of programming languages.

 After processing the source code, the precompiler produces

2 files as its output. The first file contains the source program without

embedded SQL statements and the second file contains all the embedded SQL

statements used in the program.

 The first file produced by precompiler (that contains the

source program) is fed to the compiler for the host programming language (like

C compiler). The compiler processes the source code and produces object code as

its output.

 Now the linker takes the object modules produced by the

compiler and link them with various library routines and produces an executable

program.

https://www.thecrazyprogrammer.com/2014/07/compiler-vs-interpreter.html

93

 The database request modules, produced by the precompiler

(in steps) are submitted to a special BIND program. The BIND program examines

the SQL statements, parse them, validates them, optimizes them and finally

produces an application plan for each statement. The result is a combined

application plan for the entire program, that represents a DBMS-executable

version of its embedded SQL statements. The BIND program stores the plan in the

database, usually assigning it the name of the application program that has

created it.

--
7.7. TRANSACTION PROCESSING

A transaction is a unit of work that is performed against a database. Transactions are

units or sequences of work accomplished in a logical order, whether in a manual fashion by a

user or automatically by some sort of a database program.

A transaction is the propagation of one or more changes to the database. For example, if

you are creating a record or updating a record or deleting a record from the table, then you are

performing a transaction on that table. It is important to control these transactions to ensure the

data integrity and to handle database errors.

Transaction processing is used to maintain database integrity by ensuring that batches of

SQL operations execute completely or not at all.

When working with transactions and transaction processing, there are a few keywords that'll

keep reappearing. Here are the terms you need to know:

 Transaction - A block of SQL statements

 Rollback - The process of undoing specified SQL statements

 Commit - Writing unsaved SQL statements to the database tables

 Savepoint - A temporary placeholder in a transaction set to which you can issue a

rollback (as opposed to rolling back an entire transaction)

Properties of Transactions

Transactions have the following four standard properties, usually referred to by the

acronym ACID.

 Atomicity.

 Consistency.

 Isolation.

 Durability .

Transaction Control

The following commands are used to control transactions.

94

 COMMIT − to save the changes.

 ROLLBACK − to roll back the changes.

 SAVEPOINT − creates points within the groups of transactions in which to

ROLLBACK.

 SET TRANSACTION − Places a name on a transaction.

Transactional Control Commands

Transactional control commands are only used with the DML Commands such as -

INSERT, UPDATE and DELETE only. They cannot be used while creating tables or dropping

them because these operations are automatically committed in the database.

The COMMIT Command

The COMMIT command is the transactional command used to save changes invoked by

a transaction to the database.

The COMMIT command is the transactional command used to save changes invoked by

a transaction to the database. The COMMIT command saves all the transactions to the database

since the last COMMIT or ROLLBACK command.

The syntax for the COMMIT command is as follows.

COMMIT;

The ROLLBACK Command

The ROLLBACK command is the transactional command used to undo transactions that

have not already been saved to the database. This command can only be used to undo

transactions since the last COMMIT or ROLLBACK command was issued.

The syntax for a ROLLBACK command is as follows −

ROLLBACK;

--
7.8. CONSISTENCY AND ISOLATION

 In database systems, ACID (Atomicity, Consistency, Isolation, and Durability) refers to a

standard set of properties that guarantee database transactions are processed reliably.

ACID is especially concerned with how a database recovers from any failure that might

occur while processing a transaction.

An ACID-compliant DBMS ensures that the data in the database remains accurate and

consistent despite any such failures.

Consistency

 Consistency ensures that a transaction can only bring the database from one valid state to

another, maintaining database invariants: any data written to the database must be valid

according to all defined rules, including constraints, cascades, triggers, and any combination

https://database.guide/what-is-a-database/
https://database.guide/what-is-a-dbms/
https://en.wikipedia.org/wiki/Consistency_(database_systems)
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Integrity_constraints
https://en.wikipedia.org/wiki/Cascading_rollback
https://en.wikipedia.org/wiki/Database_trigger

95

thereof. This prevents database corruption by an illegal transaction, but does not guarantee that a

transaction is correct. Referential integrity guarantees the primary key - foreign key relationship.

Consistency is the ACID property that ensures that any changes to values in an instance are

consistent with changes to other values in the same instance. A consistency constraint is a

predicate on data which serves as a precondition, post-condition, and transformation condition on

any transaction.

This SQL ACID property ensures the database consistency. It means, whatever happens in

the middle of the transaction, this property will never leave your database in half-completed

state.

 If the transaction is completed successfully then it will apply all the changes to the

database.

 If there is any error in a transaction then all the changes that are already made will be

rolled back automatically. It means, database will be restored to its state that it had before

the transaction started.

 If there is a system failure in the middle of the transaction then also, all the changes that

are already made will automatically roll back.

Isolation

This is easily the most often misunderstood of the ACID transaction properties.

 In principle, a completely isolated transaction executes as the only task executing against

the database during its lifetime. Other transactions can only start once the current transaction has

completely finished (i.e. committed or rolled back). Executed this way, a transaction would truly

be an atomic operation, in the strict sense that a non-database person would ascribe to the phrase.

In practice, database transactions operate instead with a degree of isolation specified by

the currently effective transaction isolation level (which applies equally to stand-alone

statements, remember). This compromise (the degree of isolation) is the practical consequence of

the trade-offs between concurrency and correctness mentioned earlier. A system that literally

processed transactions one-by-one, with no overlap in time, would provide complete isolation

but overall system throughput would likely be poor.

--
7.9. AUTOMICITY AND DURABILITY

Atomicity

 Transactions are often composed of multiple statements. Atomicity guarantees that each

transaction is treated as a single "unit", which either succeeds completely, or fails completely: if

any of the statements constituting a transaction fails to complete, the entire transaction fails and

https://en.wikipedia.org/wiki/Referential_integrity
https://en.wikipedia.org/wiki/Unique_key
https://en.wikipedia.org/wiki/Foreign_key
http://technet.microsoft.com/en-us/library/ms173763.aspx
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/SQL_syntax
https://en.wikipedia.org/wiki/Atomicity_(database_systems)

96

the database is left unchanged. An atomic system must guarantee atomicity in each and every

situation, including power failures, errors and crashes.

A series of database operations in an atomic transaction will either all occur, or none will

occur. The series of operations cannot be separated with only some of them being executed,

which makes the series of operations "indivisible". A guarantee of atomicity prevents updates to

the database occurring only partially, which can cause greater problems than rejecting the whole

series outright. In other words, atomicity means indivisibility and irreducibility. Alternatively,

we may say that a Logical transaction may be made of, or composed of, one or more (several),

Physical transactions. Unless and until all component Physical transactions are executed, the

Logical transaction will not have occurred – to the effects of the database.

Durability

 Once the transaction is successfully completed, then the changes it has made to the

database will be permanent. Even if there is a system failure, or any abnormal changes also, this

SQL acid property will safeguard the committed data.

--
7.10. LET US SUM UP

 In this unit, you have learnt about the embedded SQL* and its statements, variable

declarations, transaction processing and ACID properties of the DBMS. Thus, the SQL

statements-II unit would have brought you to closer to know the concept of embedded SQL

statements and implementation of ACID properties like isolation, consistency, atomicity and

durability and its working principle.

--
7.11. UNIT – END QUESTIONS

1. Identify the use of embedded SQL* statements and its variables.

2. Discuss about the ACID properties of DBMS.

--
7.12. ANSWER TO CHECK YOUR PROGRESS

1. Embedded SQL is the one which combines the high level language with the DB language

like SQL. It allows the application languages to communicate with DB and get requested

result. The high level languages which supports embedding SQLs within it are also known as

host language. Structured Query Language (SQL) is a standardized language that you can use

97

to manipulate database objects and the data that they contain. Despite differences between

host languages, embedded SQL applications are made up of three main elements that are

required to setup and issue an SQL statement.

2. In database systems, ACID (Atomicity, Consistency, Isolation, and Durability) refers to a

standard set of properties that guarantee database transactions are processed reliably.

ACID is especially concerned with how a database recovers from any failure that might

occur while processing a transaction.

An ACID-compliant DBMS ensures that the data in the database remains accurate and

consistent despite any such failures.

Consistency - Consistency ensures that a transaction can only bring the database from

one valid state to another, maintaining database invariants: any data written to the database

must be valid according to all defined rules, including constraints, cascades, triggers, and any

combination thereof.

Isolation - This is easily the most often misunderstood of the ACID transaction properties. In

principle, a completely isolated transaction executes as the only task executing against the

database during its lifetime. Other transactions can only start once the current transaction has

completely finished

Atomicity - Transactions are often composed of multiple statements. Atomicity guarantees

that each transaction is treated as a single "unit", which either succeeds completely, or fails

completely: if any of the statements constituting a transaction fails to complete, the entire

transaction fails and the database is left unchanged. An atomic system must guarantee

atomicity in each and every situation, including power failures, errors and crashes.

Durability - Once the transaction is successfully completed, then the changes it has made to

the database will be permanent. Even if there is a system failure, or any abnormal changes

also, this SQL acid property will safeguard the committed data.

https://database.guide/what-is-a-database/
https://database.guide/what-is-a-dbms/
https://en.wikipedia.org/wiki/Consistency_(database_systems)
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Integrity_constraints
https://en.wikipedia.org/wiki/Cascading_rollback
https://en.wikipedia.org/wiki/Database_trigger
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/SQL_syntax
https://en.wikipedia.org/wiki/Atomicity_(database_systems)

98

--
UNIT VIII – RELATIONAL ALGEBRA

Structure

UNIT VIII – RELATIONAL ALGEBRA
8.1. Introduction

8.2. Objective

8.3. Basic Operations

8.3.1. Union (U)

8.3.2. Difference (-)

8.3.3. Intersection

8.3.4. Cartesian product (x)

8.4. Additional Relational Algebra Operations

8.4.1. Projection

8.4.2. Selection

8.4.3. JOIN

8.4.4. Division

8.5. Let Us Sum Up

8.6. Unit – End Exercises

8.7. Answer to Check Your Progress

--
8.1. INTRODUCTION

In this lesson you will be aware with the relational algebra and is operations. These basic

relational algebra operations include union, difference, intersection and Cartesian product. Apart

from the basic operations it consist of some additional operations used like projection, selection,

JOIN and division.

--
8.2. OBJECTIVES

After going through this lesson you will be in a position to

 Explain basic operations of relational algebra.

 Define additional relational algebra operations used..

99

--
8.3. BASIC OPERATION

Relational database systems are expected to be equipped with a query language that can

assist its users to query the database instances. There are two kinds of query languages −

relational algebra and relational calculus.

Relational Algebra

Relational algebra is a procedural query language, which takes instances of relations as

input and yields instances of relations as output. It uses operators to perform queries. An operator

can be either unary or binary. They accept relations as their input and yield relations as their

output. Relational algebra is performed recursively on a relation and intermediate results are also

considered relations.

Relational algebra is a widely used procedural query language. It collects instances of

relations as input and gives occurrences of relations as output. It uses various operations to

perform this action.

Relational algebra operations are performed recursively on a relation. The output of these

operations is a new relation, which might be formed from one or more input relations. We have

divided these operations in two categories:

1. Basic Operations.

2. Derived Operations.

8.3.1. Union (U)

Union operator is denoted by ∪ symbol and it is used to select all the rows (tuples) from

two tables (relations).

UNION is symbolized by ∪ symbol. It includes all tuples that are in tables A or in B. It

also eliminates duplicate tuples. So, set A UNION set B would be expressed as:

The result <- A ∪ B

For a union operation to be valid, the following conditions must hold -

 R and S must be the same number of attributes.

 Attribute domains need to be compatible.

 Duplicate tuples should be automatically removed.

 Example

 Consider the following tables.

100

Table A Table B

column 1 column 2 column 1 column 2

1 1 1 1

1 2 1 3

 A ∪ B gives

Table A ∪ B

column 1 column 2

1 1

1 2

1 3

8.3.2. Difference (-)

 This operation is used to find data present in one relation and not present in the second

relation. This operation is also applicable on two relations, just like Union operation.

- Symbol denotes it. The result of A - B, is a relation which includes all tuples that are in A but

not in B.

 The attribute name of A has to match with the attribute name in B.

 The two-operand relations A and B should be either compatible or Union compatible.

 It should be defined relation consisting of the tuples that are in relation A, but not in B.

Example-

Consider the following two relations R and S-

ID Name Subject

100 Ankit English

200 Pooja Maths

300 Komal Science

101

Relation R

ID Name Subject

100 Ankit English

400 Kajol French

Relation S

Then, R – S is-

ID Name Subject

200 Pooja Maths

300 Komal Science

Relation R – S

8.3.3. Intersection

Intersection operator is denoted by ∩ symbol and it is used to select common rows

(tuples) from two tables (relations).

Let’s consider two relations R1 and R2 both have same columns and we want to select all

those tuples (rows) that are present in both the relations, then in that case we can apply

intersection operation on these two relations R1 ∩ R2.

Only those rows that are present in both the tables will appear in the result set.

An intersection is defined by the symbol ∩

A ∩ B

Defines a relation consisting of a set of all tuple that are in both A and B. However, A

and B must be union-compatible.

Figure 14: -Intersection Operation

102

Example:

A ∩ B

Table A ∩ B

column 1 column 2

1 1

8.3.4. Cartesian product (x)

 This type of operation is helpful to merge columns from two relations. Generally, a

Cartesian product is never a meaningful operation when it performs alone. However, it becomes

meaningful when it is followed by other operations.

Example – Cartesian product

σ column 2 = '1' (A X B)

Output – The above example shows all rows from relation A and B whose column 2 has value 1

σ column 2 = '1' (A X B)

column 1 column 2

1 1

1 1

It performs the function of combining information from two or more relations into one. It

represented by r Χ s, where r and s are relations.

Combines information of two different relations into one.

Notation − r Χ s

Where r and s are relations and their output will be defined as −

r Χ s = { q t | q ∈ r and t ∈ s}

103

--
8.4. ADDITIONAL RELATIONAL ALGEBRA OPERATIONS

 While the fundamental relational algebra operations — select, project, union,

setdifference, cartesian-product, rename — form the basis for a broad spectrum of relational

database queries and manipulations, it remains possible to define other operations over relations.

Some operations are just notational shortcuts — they are completely rewritable in terms of the 6

fundamentals.

 On the other hand, the “classical” relational algebra itself has been extended with new

operations, with new meanings and manipulations. The basic relational-algebra operations have

been extended in several ways. A simple extension is to allow arithmetic operations as part of

projection.

8.4.1. Projection

Projection is possible as user’s choice means the projection column may differ from table

column order. Symbol for column query in projection 'π'

The generalized-projection operation extends the fundamental projection operation by

allowing arithmetic (or, in the most general case, overall transformative) functions in the

projections attribute list. It is still denoted with Π, but now the straight-up attribute list A has

changed into an expression list F1, F2, . . . , Fn:

ΠF1,F2,... ,Fn (E)

E is any relational algebra expression, which is of course a relation. Fk may be any

expression involving constant values and the attributes of E’s resultant relation schema.

If we are interested in only certain attributes of a relation, we use the PROJECT operation

to project the relation over these attributes only.

Therefore, the result of the PROJECT operation can be visualized as a vertical partition

of the relation into two relations:

one has the needed columns (attributes) and contains the result of the operation, and the

other contains the discarded columns.

For example, to list each employee’s first and last name and salary, we can use the

PROJECT operation as follows:

πLname, Fname, Salary(EMPLOYEE)

The general form of the PROJECT operation is π<attribute list>(R)

Where π (pi) is the symbol used to represent the PROJECT operation, and is the desired

sublist of attributes from the attributes of relation R.

Again, notice that R is, in general, a relational algebra expression whose result is a

relation, which in the simplest case is just the name of a database relation.

104

The result of the PROJECT operation has only the attributes specified in <attribute list>

in the same order as they appear in the list.

Hence, its degree is equal to the number of attributes in <attribute list>.

If the attribute list includes only nonkey attributes of R, duplicate tuples are likely to

occur.

The PROJECT operation contains a key, removes any duplicate tuples, so the result of

the PROJECT operation is a set of distinct tuples, and hence a valid relation. This is known as

duplicate elimination.

Duplicate elimination involves sorting or some other technique to detect duplicates and

thus adds more processing.

If duplicates are not eliminated, the result would be a multiset or bag of tuples rather than

a set. This was not permitted in the formal relational model, but is allowed in SQL.

8.4.2. Selection

 The SELECT operation is used to choose a subset of the tuples from a relation that

satisfies a selection condition. One can consider the SELECT operation to be a filter that keeps

only those tuples that satisfy a qualifying condition.

σp(r)
σ is the predicate

r stands for relation which is the name of the table

p is prepositional logic

Alternatively, we can consider the SELECT operation to restrict the tuples in a relation to

only those tuples that satisfy the condition. The SELECT operation can also be visualized as a

horizontal partition of the relation into two sets of tuples—those tuples that satisfy the condition

and are selected, and those tuples that do not satisfy the condition and are discarded.

σ <selection condition> (R)

Where the symbol σ (sigma) is used to denote the SELECT operator and the selection

condition is a Boolean expression (condition) specified on the attributes of relation R.

Notice that R is generally a relational algebra expression whose result is a relation—the

simplest such expression is just the name of a database relation. The relation resulting from the

SELECT operation has the same attributes as R.

The SELECT operator is unary; that is, it is applied to a single relation. Moreover, the

selection operation is applied to each tuple individually; hence, selection conditions cannot

involve more than one tuple. The degree of the relation resulting from a SELECT operation—its

number of attributes—is the same as the degree of R.

8.4.3. JOIN

105

Join is the most powerful operation is relational algebra. It allows us to retrieve data from

multiple tables by establishing a relationship between them. Join is a projection of selection of

product of two tables.

Type of joins
Various forms of join operation are:

Inner Joins:

 Theta join

 EQUI join

 Natural join

Outer join:

 Left Outer Join

 Right Outer Join

 Full Outer Join

INNER JOIN

1. Theta Join:

The general case of JOIN operation is called a Theta join. It is denoted by symbol θ

Example

A ⋈θ B

Theta join can use any conditions in the selection criteria.

For example:

A ⋈ A.column 2 > B.column 2 (B)

2. EQUI join:

When a theta join uses only equivalence condition, it becomes a equi join.

For example:

A ⋈ A.column 2 = B.column 2 (B)

A ⋈ A.column 2 = B.column 2 (B)

column 1 column 2

1 1

EQUI join is the most difficult operations to implement efficiently in an RDBMS and one

reason why RDBMS have essential performance problems.

3. Natural Join

Natural join can only be performed if there is a common attribute (column) between the

relations. The name and type of the attribute must be same.

106

Example

Consider the following two tables

C

Num Square

2 4

3 9

D

Num Cube

2 8

3 18

C ⋈ D

C ⋈ D

Num Square Cube

2 4 4

3 9 9

OUTER JOIN

In an outer join, along with tuples that satisfy the matching criteria, we also include some or all

tuples that do not match the criteria.

1. Left Outer Join(A B)

In the left outer join, operation allows keeping all tuple in the left relation. However, if

there is no matching tuple is found in right relation, then the attributes of right relation in the join

result are filled with null values.

107

2. Right Outer Join: (A B)

In the right outer join, operation allows keeping all tuple in the right relation. However, if

there is no matching tuple is found in the left relation, then the attributes of the left relation in the

join result are filled with null values.

3. Full Outer Join: (A B)

In a full outer join, all tuples from both relations are included in the result, irrespective of

the matching condition.

8.4.4. Division

 The division is similarly performing as same as division set operation in mathematics

between tuple (row) and attribute (column).

Here, is some example is shown below related to these operations take a look.

Table (A1) :
E. No. E. Name Salary Dept. No.

1 A 5000 10

2 B 4000 10

Table (A2) :
Dept. No. D. Name Location

10 IT Mumbai

20 Sales Delhi

30 HR Hyderabad

Division:

A1 / A2:
E. No E. Name Salary D. Name Location

1 A 5000 IT Mumbai

1 A 5000 Sales Delhi

1 A 5000 HR Hyderabad

2 B 4000 IT Mumbai

2 B 4000 Sales Delhi

2 B 4000 HR Mumbai

108

--
8.5. LET US SUM UP

 In this unit, you have learnt about the relational algebra and its basic and additional

operations. Thus, the relational algebra unit would have brought you to closer to know the

concept of relational algebra basic operations like union, difference, intersection and Cartesian

product and additional operations are projection, selection, JOIN and division are effectively

implemented in DBMS.

--
8.6. UNIT – END QUESTIONS

1. List out the basic operations of relational algebra.

2. List out the additional operations of relational algebra.

--
8.7. ANSWER TO CHECK YOUR PROGRESS

1. Relational algebra is a procedural query language, which takes instances of relations as input

and yields instances of relations as output. It uses operators to perform queries. An operator

can be either unary or binary. They accept relations as their input and yield relations as their

output. Relational algebra is performed recursively on a relation and intermediate results are

also considered relations.

Relational algebra is a widely used procedural query language. It collects instances of

relations as input and gives occurrences of relations as output. It uses various operations to

perform this action.

Relational algebra operations are performed recursively on a relation. The output of these

operations is a new relation, which might be formed from one or more input relations. We

have divided these operations in two categories:

 Basic Operations.

 Derived Operations.

Union operator is denoted by ∪ symbol and it is used to select all the rows (tuples) from two

tables (relations).

Difference (-) - This operation is used to find data present in one relation and not present in

the second relation. This operation is also applicable on two relations, just like Union

operation.

109

Intersection operator is denoted by ∩ symbol and it is used to select common rows (tuples)

from two tables (relations).

Cartesian product (x) - This type of operation is helpful to merge columns from two relations.

Generally, a Cartesian product is never a meaningful operation when it performs alone.

2. While the fundamental relational algebra operations — select, project, union, set difference,

Cartesian-product, rename — form the basis for a broad spectrum of relational database

queries and manipulations, it remains possible to define other operations over relations. Some

operations are just notational shortcuts — they are completely rewritable in terms of the 6

fundamentals.

On the other hand, the “classical” relational algebra itself has been extended with new

operations, with new meanings and manipulations. The basic relational-algebra operations

have been extended in several ways. A simple extension is to allow arithmetic operations as

part of projection.

Projection is possible as user’s choice means the projection column may differ from table

column order. Symbol for column query in projection 'π'. The SELECT operation is used to

choose a subset of the tuples from a relation that satisfies a selection condition. One can

consider the SELECT operation to be a filter that keeps only those tuples that satisfy a

qualifying condition. Join is the most powerful operation is relational algebra. It allows us to

retrieve data from multiple tables by establishing a relationship between them. Join is a

projection of selection of product of two tables. The division is similarly performing as same

as division set operation in mathematics between tuple (row) and attribute (column).

110

BLOCK III: - E-PAYMENT SYSTEMS AND CRM, SCM

--
UNIT IX – RELATIONAL CALCULUS

Structure

UNIT IX – RELATIONAL CALCULUS
9.1. Introduction

9.2. Objective

9.3. Tuple Relational Calculus

9.3.1. Semantics of TRC Queries

9.3.2. Examples of TRC Queries

9.6. Domain Relational Calculus

9.7. Relational ALGEBRA Vs Relational CALCULUS

9.8. Let Us Sum Up

9.9. Unit – End Exercises

9.10. Answer to Check Your Progress.

--
9.1. INTRODUCTION

 As you know by now, how to use the relational calculus and find the comparison of

relational algebra and relational calculus for database management system. The queries are

playing a vital role in database system and database management. In this lesson, you have learnt

about the types of relational calculus and difference between the relational algebra and relational

calculus.

--
9.2. OBJECTIVES

After going through this lesson you will be in a position to

 Explain tuple relational calculus and its queries.

 Explain domain relational calculus.

111

--
9.3. TUPLE RELATIONAL CALCULUS

 Relational calculus is a query language which is non-procedural, and instead of algebra, it

uses mathematical predicate calculus. The relational calculus is not the same as that of

differential and integral calculus in mathematics but takes its name from a branch of symbolic

logic termed as predicate calculus.

Relational calculus is a non procedural query language. It uses mathematical predicate

calculus instead of algebra. It provides the description about the query to get the result where as

relational algebra gives the method to get the result. It informs the system what to do with the

relation, but does not inform how to perform it.

For example, steps involved in listing all the students who attend ‘Database’ Course in relational

algebra would be

 SELECT the tuples from COURSE relation with COURSE_NAME = ‘DATABASE’

 PROJECT the COURSE_ID from above result

 SELECT the tuples from STUDENT relation with COUSE_ID resulted above.

In the case of relational calculus, it is described as below:

Get all the details of the students such that each student have course as 'Database'.

See the difference between relational algebra and relational calculus here. From the first

one, we are clear on how to query and which relations to be queried. But the second tells what

needs to be done to get the students with ‘database’ course. But it does tell us how we need to

proceed to achieve this. Relational calculus is just the explanative way of telling the query.

There are two types of relational calculus –

 Tuple Relational Calculus (TRC) and

 Domain Relational Calculus (DRC).

9.3.1. Semantics of TRC Queries

 A tuple relational calculus is a non procedural query language which specifies to select

the tuples in a relation. It can select the tuples with range of values or tuples for certain attribute

values etc. The resulting relation can have one or more tuples. It is denoted as below:

{t | P (t)} or {t | condition (t)} -- this is also known as expression of relational calculus

Where t is the resulting tuples, P(t) is the condition used to fetch t.

{t | EMPLOYEE (t) and t.SALARY>10000} - implies that it selects the tuples from

EMPLOYEE relation such that resulting employee tuples will have salary greater than 10000. It

is example of selecting a range of values.

{t | EMPLOYEE (t) AND t.DEPT_ID = 10} – this select all the tuples of employee name who

work for Department 10.

112

The variable which is used in the condition is called tuple variable. In above example

t.SALARY and t.DEPT_ID are tuple variables. In the first example above, we have specified the

condition t.SALARY >10000. What is the meaning of it? For all the SALARY>10000, display

the employees. Here the SALARY is called as bound variable. Any tuple variable with ‘For

All’ (?) or ‘there exists’ (?) condition is called bound variable. Here, for any range of values of

SALARY greater than 10000, the meaning of the condition remains the same. Bound variables

are those ranges of tuple variables whose meaning will not change if the tuple variable is

replaced by another tuple variable.

In the second example, we have used DEPT_ID= 10. That means only for DEPT_ID = 10

display employee details. Such variable is called free variable. Any tuple variable without any

‘For All’ or ‘there exists’ condition is called Free Variable. If we change DEPT_ID in this

condition to some other variable, say EMP_ID, the meaning of the query changes. For example,

if we change EMP_ID = 10, then above it will result in different result set. Free variables are

those ranges of tuple variables whose meaning will change if the tuple variable is replaced by

another tuple variable.

All the conditions used in the tuple expression are called as well formed formula – WFF.

All the conditions in the expression are combined by using logical operators like AND, OR and

NOT, and qualifiers like ‘For All’ (?) or ‘there exists’ (?). If the tuple variables are all bound

variables in a WFF is called closed WFF. In an open WFF, we will have at least one free

variable.

9.3.2. Examples of TRC Queries

 Tuple relational calculus is used for selecting those tuples that satisfy the given condition.

Table: Student

First_Name Last_Name Age

---------- --------------- ----

Ajeet Singh 30

Chaitanya Singh 31

Rajeev Bhatia 27

Carl Pratap 28
Let’s write relational calculus queries.

Query to display the last name of those students where age is greater than 30

{ t.Last_Name | Student(t) AND t.age > 30 }

In the above query you can see two parts separated by | symbol. The second part is where

we define the condition and in the first part we specify the fields which we want to display for

the selected tuples.

The result of the above query would be:

113

Last_Name

Singh
Query to display all the details of students where Last name is ‘Singh’

 { t | Student(t) AND t.Last_Name = 'Singh' }

Output:

First_Name Last_Name Age

---------- --------- ----

Ajeet Singh 30

Chaitanya Singh 31

--
9.4. DOMAIN RELATIONAL CALCULUS

The second form of relation is known as Domain relational calculus. In domain relational

calculus, filtering variable uses the domain of attributes.

Domain relational calculus uses the same operators as tuple calculus. It uses logical

connectives ∧ (and), ∨ (or) and ┓ (not). It uses Existential (∃) and Universal Quantifiers (∀) to

bind the variable.

In contrast to tuple relational calculus, domain relational calculus uses list of attribute to

be selected from the relation based on the condition. It is same as TRC, but differs by selecting

the attributes rather than selecting whole tuples. It is denoted as below:

{< a1, a2, a3, … an > | P(a1, a2, a3, … an)}

Where a1, a2, a3, … an are attributes of the relation and P is the condition.

For example, select EMP_ID and EMP_NAME of employees who work for department 10

{<EMP_ID, EMP_NAME> | <EMP_ID, EMP_NAME> ? EMPLOYEE Λ DEPT_ID = 10}

Get name of the department name that Alex works for.

{DEPT_NAME |< DEPT_NAME > ? DEPT Λ ? DEPT_ID (<DEPT_ID> ? EMPLOYEE Λ

EMP_NAME = Alex)}

Here green color expression is evaluated to get the department Id of Alex and then it is

used to get the department name form DEPT relation.

Let us consider another example where select EMP_ID, EMP_NAME and ADDRESS

the employees from the department where Alex works. What will be done here?

{<EMP_ID, EMP_NAME, ADDRESS, DEPT_ID > | <EMP_ID, EMP_NAME, ADDRESS,

DEPT_ID> ? EMPLOYEE Λ ? DEPT_ID (<DEPT_ID> ? EMPLOYEE Λ EMP_NAME =

Alex)}

First, formula is evaluated to get the department ID of Alex (green color), and then all the

employees with that department is searched (red color).

114

--
9.5. RELATIONAL ALGEBRA VS RELATIONAL CALCULUS

 Relational Algebra and Relational Calculus are the formal query languages for a

relational model. Both form the base for the SQL language which is used in most of the

relational DBMSs. Relational Algebra is a procedural language. On the other hands, Relational

Calculus is a declarative language.

Comparison Chart: -

BASIS FOR

COMPARISON
RELATIONAL ALGEBRA RELATIONAL CALCULUS

Basic
Relational Algebra is a Procedural

language.

Relational Calculus is

Declarative language.

States
Relational Algebra states how to

obtain the result.

Relational Calculus states what

result we have to obtain.

Order

Relational Algebra describes the order

in which operations have to be

performed.

Relational Calculus does not

specify the order of operations.

Domain
Relational Algebra is not domain

dependent.

Relation Claculus can be

domain dependent.

Related It is close to a programming language.
It is close to the natural

language.

Key Differences between Relational Algebra and Relational Calculus

1. The basic difference between Relational Algebra and Relational Calculus is that

Relational Algebra is a Procedural language whereas, the Relational Calculus is a Non-

Procedural, instead it is a Declarative language.

2. The Relational Algebra defines how to obtain the result whereas, the Relational Calculus

define what information the result must contain.

3. Relational Algebra specifies the sequence in which operations have to be performed in

the query. On the other hands, Relational calculus does not specify the sequence of

operations to perform in the query.

115

4. The Relational Algebra is not domain dependent whereas, the Relational Calculus can be

domain dependent as we have Domain Relational Calculus.

5. The Relational Algebra query language is closely related to programming language

whereas; the Relational Calculus is closely related to the Natural Language.

--
9.5. LET US SUM UP

 In this unit, you have learnt about the relational calculus and its types, each type having a

predefined query system. Thus, the relational calculus unit would have brought you to closer to

know the concept of relational calculus and types of relational calculus and queries used in each

type is identified.

--
9.6. UNIT – END QUESTIONS

1. Describe about the tuple relational calculus and its queries.

2. Describe about the domain relational calculus with example.

--
9.7. ANSWER TO CHECK YOUR PROGRESS

1. Relational calculus is just the explanative way of telling the query. There are two types of

 relational calculus –

1. Tuple Relational Calculus (TRC) and

2. Domain Relational Calculus (DRC).

 A tuple relational calculus is a non procedural query language which specifies to select

 the tuples in a relation. It can select the tuples with range of values or tuples for certain

 attribute values etc. The resulting relation can have one or more tuples.

2. The second form of relation is known as Domain relational calculus. In domain relational

 calculus, filtering variable uses the domain of attributes.

 Domain relational calculus uses the same operators as tuple calculus. It uses logical

 connectives ∧ (and), ∨ (or) and ┓ (not). It uses Existential (∃) and Universal Quantifiers

 (∀) to bind the variable.

116

 In contrast to tuple relational calculus, domain relational calculus uses list of

 attribute to be selected from the relation based on the condition. It is same as TRC, but

 differs by selecting the attributes rather than selecting whole tuples.

117

--
UNIT X – NORMALIZATION

Structure

UNIT X – NORMALIZATION
10.1. Introduction

10.2. Objective

10.3. Functional Dependency
10.4. Anomalies in a database

10.5. Properties of Normalized Relations

10.6. First Normalization

10.7. Second Normal Form Relation

10.8. Third Normal Form

10.9. Boyce-Codd Normal Form (BCNF)

10.10. Fourth and Fifth Normal Form

10.11. Let Us Sum Up

10.12. Unit – End Exercises

10.13. Answer to Check Your Progress

--
10.1. INTRODUCTION

In this lesson you will be know about the concept of normalization and its types. This

normalization concept elaborates the anomalies of a database, properties of normalized relations

and various types of normalization techniques. Apart from the normalization technique the

functional dependencies are identified in this unit.

--
10.2. OBJECTIVES

After going through this lesson you will be in a position to

 Explain the functional dependencies of the database.

 Define the anomalies of a database.

 Explain the normalization and its techniques.

118

--
10.3. FUNCTIONAL DEPENDENCY

Functional dependency in DBMS, as the name suggests is a relationship between

attributes of a table dependent on each other. Introduced by E. F. Codd, it helps in preventing

data redundancy and gets to know about bad designs.

To understand the concept thoroughly, let us consider P is a relation with attributes A

and B. Functional Dependency is represented by -> (arrow sign)

Then the following will represent the functional dependency between attributes with an

arrow sign:

A -> B

Rules of Functional Dependencies

Below given are the three most important rules for Functional Dependency:

 Reflexive rule –. If X is a set of attributes and Y is_subset_of X, then X holds a value of

Y.

 Augmentation rule: When x -> y holds, and c is attribute set, then ac -> bc also holds.

That is adding attributes which do not change the basic dependencies.

 Transitivity rule: This rule is very much similar to the transitive rule in algebra if x -> y

holds and y -> z holds, then x -> z also holds. X -> y is called as functionally that

determines y.

Types of Functional Dependencies

 Multivalued dependency:

 Trivial functional dependency:

 Non-trivial functional dependency:

 Transitive dependency:

Multivalued dependency occurs in the situation where there are multiple independent

multivalued attributes in a single table. A multivalued dependency is a complete constraint

between two sets of attributes in a relation. It requires that certain tuples be present in a relation.

The Trivial dependency is a set of attributes which are called a trivial if the set of attributes

are included in that attribute.

So, X -> Y is a trivial functional dependency if Y is a subset of X.

Functional dependency which also known as a nontrivial dependency occurs when A->B

holds true where B is not a subset of A. In a relationship, if attribute B is not a subset of attribute

A, then it is considered as a non-trivial dependency.

A transitive is a type of functional dependency which happens when t is indirectly formed

by two functional dependencies.

119

Advantages of Functional Dependency

 Functional Dependency avoids data redundancy. Therefore same data do not repeat at

multiple locations in that database

 It helps you to maintain the quality of data in the database

 It helps you to defined meanings and constraints of databases

 It helps you to identify bad designs

 It helps you to find the facts regarding the database design

--
10.4. ANOMALIES IN A DATABASE

 Database anomalies are the problems in relations that occur due to redundancy in the

relations. These anomalies affect the process of inserting, deleting and modifying data in the

relations. Some important data may be lost if a relations is updated that contains database

anomalies. It is important to remove these anomalies in order to perform different processing on

the relations without any problem.

There are three types of anomalies that occur when the database is not normalized. These

are – Insertion, update and deletion anomaly. Let’s take an example to understand this.

Example: Suppose a manufacturing company stores the employee details in a table

named employee that has four attributes: emp_id for storing employee’s id, emp_name for

storing employee’s name, emp_address for storing employee’s address and emp_dept for storing

the department details in which the employee works. At some point of time the table looks like

this:

emp_id emp_name emp_address emp_dept

101 Rick Delhi D001

101 Rick Delhi D002

123 Maggie Agra D890

166 Glenn Chennai D900

166 Glenn Chennai D004

The above table is not normalized. We will see the problems that we face when a table is

not normalized.

120

 Update anomaly: In the above table we have two rows for employee Rick as he belongs

to two departments of the company. If we want to update the address of Rick then we

have to update the same in two rows or the data will become inconsistent. If somehow,

the correct address gets updated in one department but not in other then as per the

database, Rick would be having two different addresses, which is not correct and would

lead to inconsistent data.

 Insert anomaly: Suppose a new employee joins the company, who is under training and

currently not assigned to any department then we would not be able to insert the data into

the table if emp_dept field doesn’t allow nulls.

 Delete anomaly: Suppose, if at a point of time the company closes the department D890

then deleting the rows that are having emp_dept as D890 would also delete the

information of employee Maggie since she is assigned only to this department.

To overcome these anomalies we need to normalize the data.

--
10.5. PROPERTIES OF NORMALIZED RELATIONS

 Normalization is the process of removing redundant data from your tables in order to

improve storage efficiency, data integrity and scalability. This improvement is balanced against

an increase in complexity and potential performance losses from the joining of the normalized

tables at query-time. There are two goals of the normalization process: eliminating redundant

data (for example, storing the same data in more than one table) and ensuring data dependencies

make sense (only storing related data in a table). Both of these are worthy goals as they reduce

the amount of space a database consumes and ensure that data is logically stored.

Why We Need Normalization?

Normalization is the aim of well design Relational Database Management System

(RDBMS). It is step by step set of rules by which data is put in its simplest forms. We normalize

the relational database management system because of the following reasons:

 Minimize data redundancy i.e. no unnecessarily duplication of data.

 To make database structure flexible i.e. it should be possible to add new data values and

rows without reorganizing the database structure.

 Data should be consistent throughout the database i.e. it should not suffer from following

anomalies.

 Insert Anomaly - Due to lack of data i.e., all the data available for insertion such that null

values in keys should be avoided. This kind of anomaly can seriously damage a database.

 Update Anomaly - It is due to data redundancy i.e. multiple occurrences of same values

in a column. This can lead to inefficiency.

 Deletion Anomaly - It leads to loss of data for rows that are not stored elsewhere. It could

result in loss of vital data.

http://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms
http://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms

121

 Complex queries required by the user should be easy to handle.

Benefits of Normalization

There are many benefits of normalizing a database. Here are some of the key benefits:

 Minimizes data redundancy (duplicate data).

 Minimizes null values.

 Results in a more compact database (due to less data redundancy/null values).

 Minimizes/avoids data modification issues.

 Simplifies queries.

 The database structure is cleaner and easier to understand. You can learn a lot about a

relational database just by looking at its schema.

 You can extend the database without necessarily impacting the existing data.

 Searching, sorting, and creating indexes can be faster, since tables are narrower, and

more rows fit on a data page.

There are several stages of the normalization process. These are called the first normal form

(1NF), the second normal form (2NF), the third normal form (3.NF), Boyce-Codd normal form

(BCNF), the fourth normal form (4NF) and the fifth normal form (5NF).

--
10.6. FIRST NORMALIZATION

 Database Normalization is a technique of organizing the data in the database.

Normalization is a systematic approach of decomposing tables to eliminate data redundancy

(repetition) and undesirable characteristics like Insertion, Update and Deletion Anomalies. It is a

multi-step process that puts data into tabular form, removing duplicated data from the relation

tables.

If a table is not properly normalized and has data redundancy then it will not only eat up

extra memory space but will also make it difficult to handle and update the database, without

facing data loss. Insertion, Updation and Deletion Anomalies are very frequent if database is not

normalized.

The first normal form expects you to follow a few simple rules while designing your database,

and they are:

Rule 1: Single Valued Attributes

Each column of your table should be single valued which means they should not contain

multiple values.

Rule 2: Attribute Domain should not change

This is more of a "Common Sense" rule. In each column the values stored must be of the

same kind or type.

https://database.guide/what-is-a-database-schema/

122

Rule 3: Unique name for Attributes/Columns

This rule expects that each column in a table should have a unique name. This is to avoid

confusion at the time of retrieving data or performing any other operation on the stored data.

If one or more columns have same name, then the DBMS system will be left confused.

Rule 4: Order doesn't matters

This rule says that the order in which you store the data in your table doesn't matter.

Here is our table, with some sample data added to it.

Roll_no Name Subject

101 Akon OS, CN

103 Ckon Java

102 Bkon C, C++

Our table already satisfies 3 rules out of the 4 rules, as all our column names are unique,

we have stored data in the order we wanted to and we have not inter-mixed different type of data

in columns.

But out of the 3 different students in our table, 2 have opted for more than 1 subject. And

we have stored the subject names in a single column. But as per the 1st Normal form each

column must contain atomic value.

Here is our updated table and it now satisfies the First Normal Form.

Roll_no Name Subject

101 Akon OS

101 Akon CN

103 Ckon Java

102 Bkon C

102 Bkon C++

By doing so, although a few values are getting repeated but values for the subjectcolumn are now

atomic for each record/row.

Using the First Normal Form, data redundancy increases, as there will be many columns with

same data in multiple rows but each row as a whole will be unique.

123

--
10.7. SECOND NORMAL FORM

For a table to be in the Second Normal Form, it must satisfy two conditions:

1. The table should be in the First Normal Form.

2. There should be no Partial Dependency.

For a table to be in the Second Normal form it should be in the First Normal form and it

should not have Partial Dependency.

Partial Dependency exists, when for a composite primary key, any attribute in the table

depends only on a part of the primary key and not on the complete primary key.

To remove Partial dependency, we can divide the table, remove the attribute which is

causing partial dependency, and move it to some other table where it fits in well.

The entity should be considered already in 1NF, and all attributes within the entity should

depend solely on the unique identifier of the entity.

Example:

Sample Products table:

productID product Brand

1 Monitor Apple

2 Monitor Samsung

3 Scanner HP

4 Head phone JBL

Product table following 2NF:

Products Category table:

productID product

1 Monitor

2 Scanner

3 Head phone

124

Brand table:

brandID brand

1 Apple

2 Samsung

3 HP

4 JBL

Products Brand table:

pbID productID brandID

1 1 1

2 1 2

3 2 3

4 3 4

--
10.8. THIRD NORMAL FORM

For a table to be in the third normal form,

1. It should be in the Second Normal form.

2. And it should not have Transitive Dependency.

Transitive Dependency?

With exam_name and total_marks added to our Score table, it saves more data now.

Primary key for our Score table is a composite key, which means it's made up of two attributes or

columns → student_id + subject_id.

125

Our new column exam_name depends on both student and subject. For example, a

mechanical engineering student will have Workshop exam but a computer science student won't.

And for some subjects you have Prctical exams and for some you don't. So we can say

that exam_name is dependent on both student_id and subject_id.

The column total_marks depends on exam_name as with exam type the total score

changes. For example, practicals are of less marks while theory exams are of more marks.

But, exam_name is just another column in the score table. It is not a primary key or even

a part of the primary key, and total_marks depends on it.

This is Transitive Dependency. When a non-prime attribute depends on other non-prime

attributes rather than depending upon the prime attributes or primary key.

How to remove Transitive Dependency?

Again the solution is very simple. Take out the

columns exam_name and total_marksfrom Score table and put them in an Exam table and use

the exam_id wherever required.

Score Table: In 3rd Normal Form

score_id student_id subject_id marks exam_id

The new Exam table

exam_id exam_name total_marks

1 Workshop 200

2 Mains 70

3 Practicals 30

Advantage of removing Transitive Dependency

The advantage of removing transitive dependency is,

 Amount of data duplication is reduced.

 Data integrity achieved.

--
10.9. BOYCE-CODD NORMAL FORM

126

 Boyce and Codd Normal Form is a higher version of the Third Normal form. This form

deals with certain type of anomaly that is not handled by 3NF. A 3NF table which does not have

multiple overlapping candidate keys is said to be in BCNF. For a table to be in BCNF, following

conditions must be satisfied:

 R must be in 3rd Normal Form

 and, for each functional dependency (X → Y), X should be a super Key.

Below we have a college enrolment table with columns student_id, subject and professor.

student_id subject professor

101 Java P.Java

101 C++ P.Cpp

102 Java P.Java2

103 C# P.Chash

104 Java P.Java

In the table above student_id, subject together form the primary key, because

using student_id and subject, we can find all the columns of the table.

One more important point to note here is, one professor teaches only one subject, but one

subject may have two different professors.

Hence, there is a dependency between subject and professor here, where subject depends

on the professor name.

This table satisfies the 1st Normal form because all the values are atomic, column names

are unique and all the values stored in a particular column are of same domain.

This table also satisfies the 2nd Normal Form as their is no Partial Dependency.

And, there is no Transitive Dependency, hence the table also satisfies the 3rd Normal Form.

But this table is not in Boyce-Codd Normal Form.

To make this relation(table) satisfy BCNF, we will decompose this table into two

tables, student table and professor table.

Below we have the structure for both the tables.

127

Student Table

student_id p_id

101 1

101 2

And, Professor Table

p_id professor subject

1 P.Java Java

2 P.Cpp C++

and so on...

And now, this relation satisfies Boyce-Codd Normal Form.

--
10.10. FOURTH AND FIFTH NORMAL FORM

Fourth Normal Form
For a table to satisfy the Fourth Normal Form, it should satisfy the following two conditions:

1. It should be in the Boyce-Codd Normal Form.

2. And, the table should not have any Multi-valued Dependency.

A table is said to have multi-valued dependency, if the following conditions are true,

1. For a dependency A → B, if for a single value of A, multiple value of B exists, then the

table may have multi-valued dependency.

2. Also, a table should have at-least 3 columns for it to have a multi-valued dependency.

3. And, for a relation R(A,B,C), if there is a multi-valued dependency between, A and B,

then B and C should be independent of each other.

If all these conditions are true for any relation(table), it is said to have multi-valued

dependency.

A table can also have functional dependency along with multi-valued dependency. In that

case, the functionally dependent columns are moved in a separate table and the multi-valued

dependent columns are moved to separate tables.

128

If you design your database carefully, you can easily avoid these issues.

Fifth Normal Form
A table is in 5

th
 Normal Form only if it is in 4NF and it cannot be decomposed into any

number of smaller tables without loss of data.

--
10.11. LET US SUM UP

 In this unit, you have learnt about the need of normalization in the database, the concept

of normalization, types of normalization. Thus, the normalization unit would have brought you to

closer to know the concept of functional dependencies, anomalies of a database, normalization,

and types of normalization.

--
10.12. UNIT – END QUESTIONS

1. Explain about the functional dependencies in the database.

2. Discuss about the anomalies of a database.

3. Define normalization. Explain the various types of normalization.

--
10.13. ANSWER TO CHECK YOUR PROGRESS

1. Functional dependency in DBMS, as the name suggests is a relationship between attributes

of a table dependent on each other. Introduced by E. F. Codd, it helps in preventing data

redundancy and gets to know about bad designs.

To understand the concept thoroughly, let us consider P is a relation with attributes A and B.

Functional Dependency is represented by -> (arrow sign)

Types of Functional Dependencies

 Multivalued dependency:

 Trivial functional dependency:

 Non-trivial functional dependency:

 Transitive dependency:

129

2. Database anomalies are the problems in relations that occur due to redundancy in the

relations. These anomalies affect the process of inserting, deleting and modifying data in the

relations. Some important data may be lost if a relations is updated that contains database

anomalies. It is important to remove these anomalies in order to perform different processing

on the relations without any problem.

There are three types of anomalies that occur when the database is not normalized. These are

– Insertion, update and deletion anomaly.

3. Normalization is the process of removing redundant data from your tables in order to

improve storage efficiency, data integrity and scalability. This improvement is balanced

against an increase in complexity and potential performance losses from the joining of the

normalized tables at query-time. There are two goals of the normalization process:

eliminating redundant data and ensuring data dependencies make sense. The normalization

techniques are,

 The first normal Form.

 Second Normal Form.

 Third normal form – Boyce Codd Normal Form.

 Fourth Normal Form.

 Fifth Normal Form.

130

--
UNIT XI – QUERY PROCESSING AND OPTIMIZATION

Structure

UNIT XI – QUERY PROCESSING AND OPTIMIZATION
11.1. Introduction

11.2. Objective

11.3. Query Interpretation

11.4. Equivalence of expressions

11.5. Algorithm for Executing Query Operations

11.6. External Sorting

11.7. Select Operation

11.8. Join Operation

11.9. PROJECT and set Operation

11.10. Aggregate Operations

11.11. Outer Join

11.12. Heuristics in Query Optimization

11.13. Semantic Query Optimization

11.14. Converting Query Tree to Query Evaluation Plan

11.15. Cost Estimates in Query Optimization

11.15.1. Measure of Query Cost

11.16. Catalog information for cost estimation of queries

11.17. Join Strategies for Parallel Processing

11.18. Parallel Join

11.19. Pipelined multi way join

11.20. Physical organization

11.21. Let Us Sum Up

11.22. Unit – End Exercises

11.23. Answer to Check Your Progress

--
11.1. INTRODUCTION

 As you know by now, how to use the SQL query and various languages used to manage

the databases. In this lesson, you will understand the concept of query processing and

131

optimization. The query processing include various operations like external sorting, SELECT

operation, aggregate operation and join operation. The process of optimization represent the

techniques like parallel processing, parallel join and pipelined process too.

--
11.2. OBJECTIVES

After going through this lesson you will be in a position to

 Explain query processing operations.

 Define query optimization techniques.

--
11.3. QUERY INTERPRETATION

The main goal of creating a database is to store the related data at one place, access and

manipulate them as and when it is required by the user. Accessing and manipulating the data

should be done efficiently i.e.; it should be accessed easily and quickly.

But a database is a system and the users are either another system or application or a

person. The user can request the data in a language that he understands. But DBMS has its own

language (SQL) which it understands. Hence the users are asked to query the database in its

language – SQL. This SQL is a high level language created to build a bridge between user and

DBMS for their communication. But the underlying systems in the DBMS will not understand

SQL. There has to be some low level language which these systems can understand. Usually any

query written in SQL is converted into low level language using relational algebra which system

can understand. But it will be difficult for any user to directly write relational algebra kind of

queries. It requires thorough knowledge of it.

Hence what DBMS does is it asks its users to write query in SQL. It verifies the code

written by the user and then converts them into low level languages. It then selects the best

execution path and executes the query and gets the data from internal memory. All these

processes are together known as query processing.

It is the step by step process of breaking the high level language into low level language

which machine can understand and perform the requested action for user. Query processor in the

DBMS performs this task.

Below diagram depicts how a query is processed in the database to show the result. When

a query is submitted to the database, it is received by the query compiler. It then scans the query

and divides it into individual tokens. Once the tokens are generated, they are verified for their

132

correctness by the parser. Then the tokenized queries are transformed into different possible

relational expressions, relational trees and relational graphs (Query Plans).

Figure 15: - Query Processing Architecture

Query optimizer then picks them to identify the best query plan to process. It checks in

the system catalog for the constraints and indexes and decides the best query plan. It generates

different execution plans for the query plan. The query execution plan then decides the best and

optimized execution plan for execution. The command processor then uses this execution plan to

retrieve the data from the database and returns the result.

--
11.4. EQUIVALENCE OF EXPRESSIONS

 Any two relational expressions are said to be equivalent, if both the expression generate

same set of records. When two expressions are equivalent we can use them interchangeably. i.e.;

we can use either of the expression whichever gives better performance.

We can have different equivalent expression for different types of operations.

Equivalence Rule defines how to write equivalence expression for each of the operators.

When we have multiple selection operation looping one inside other on the table, then we

can write them in any order. That is,

σθ1 (σθ2 (T)) = σθ2 (σθ1 (T)), where T is the table and θ is filter condition.

This implies that in a selection operation order of θ1 and θ2 does not affect the result. It

can be used in any order. That is conditions of selection operation are commutative in nature.

For example, retrieve the students of age 18 who are studying in class DESIGN_01.

133

Actually, relational expressions are written in this form as a part of equivalence relation.

Above query is written for better understanding. Going forward, let us try to understand the

equivalence rule in terms of relational expression. Relational expression for above query can be

written as below:

σ AGE = 18 (σCLASS_ID = ‘DESIGN_01’ (STUDENT)) = σCLASS_ID = ‘DESIGN_01’ (σ

AGE = 18 (STUDENT))

--
11.5. ALGORITHM FOR EXECUTING QUERY OPERATIONS

 A query expressed in a high-level query language such as SQL must first be scanned,

parsed, and validated. The scanner identifies the query tokens—such as SQL keywords, attribute

names, and relation names—that appear in the text of the query, whereas the parser checks the

query syntax to determine whether it is formulated according to the syntax rules (rules of

grammar) of the query language. The query must also be validated by checking that all attribute

and relation names are valid and semantically meaningful names in the schema of the particular

database being queried. An internal representation of the query is then created, usually as a tree

data structure called a query tree. It is also possible to rep-resent the query using a graph data

structure called a query graph. The DBMS must then devise an execution strategy or query

plan for retrieving the results of the query from the database files. A query typically has many

possible execution strategies, and the process of choosing a suitable one for processing a query is

known as query optimization.

 The different steps of processing a high-level query. The query optimizer module has the

task of producing a good execution plan, and the code generator generates the code to execute

that plan. The runtime database processor has the task of running (executing) the query code,

whether in compiled or interpreted mode, to produce the query result. If a runtime error results,

an error message is generated by the runtime database processor.

The term optimization is actually a misnomer because in some cases the chosen

execution plan is not the optimal (or absolute best) strategy—it is just a reasonably efficient

strategy for executing the query. Finding the optimal strategy is usually too time-consuming—

except for the simplest of queries. In addition, trying to find the optimal query execution strategy

may require detailed information on how the files are implemented and even on the contents of

the files—information that may not be fully available in the DBMS catalog. Hence, planning of a

good execution strategy may be a more accurate description than query optimization.

134

Figure 16: - Steps or Algorithm for Query Execution

A relational DBMS must systematically evaluate alternative query execution strategies

and choose a reasonably efficient or near-optimal strategy. Each DBMS typically has a number

of general database access algorithms that implement relational algebra operations such

as SELECT or JOIN or combinations of these operations. Only execution strategies that can be

implemented by the DBMS access algorithms and that apply to the particular query, as well as to

the particular physical database design, can be considered by the query optimization module.

--
11.6. EXTERNAL SORTING

 It refers to sorting algorithms that are suitable for large files of records stored on disk that

do not fit entirely in main memory, such as most database files.

External sorting refers to sorting algorithms that are suitable for large files of records

stored on disk that do not fit entirely in main memory, such as most data-base files. The typical

external sorting algorithm uses a sort-merge strategy, which starts by sorting small subfiles—

135

called runs—of the main file and then merges the sorted runs, creating larger sorted subfiles that

are merged in turn. The sort-merge algorithm, like other database algorithms, requires buffer

space in main memory, where the actual sorting and merging of the runs is performed. The basic

algorithm consists of two phases: the sorting phase and the merging phase. The buffer space in

main memory is part of the DBMS cache—an area in the computer’s main memory that is

controlled by the DBMS. The buffer space is divided into individual buffers, where

each buffer is the same size in bytes as the size of one disk block. Thus, one buffer can hold the

contents of exactly one disk block.

In the sorting phase, runs (portions or pieces) of the file that can fit in the available buffer

space are read into main memory, sorted using an internal sorting algorithm, and written back to

disk as temporary sorted subfiles (or runs). The size of each run and the number of initial runs

(nR) are dictated by the number of file blocks (b) and the available buffer space (nB). For

example, if the number of available main memory buffers nB = 5 disk blocks and the size of the

file b = 1024 disk blocks, then nR= (b/nB) or 205 initial runs each of size 5 blocks (except the last

run which will have only 4 blocks). Hence, after the sorting phase, 205 sorted runs (or 205 sorted

subfiles of the original file) are stored as temporary subfiles on disk.

In the merging phase, the sorted runs are merged during one or more merge passes. Each

merge pass can have one or more merge steps. The degree of merging (dM) is the number of

sorted subfiles that can be merged in each merge step. During each merge step, one buffer block

is needed to hold one disk block from each of the sorted subfiles being merged, and one

additional buffer is needed for containing one disk block of the merge result, which will produce

a larger sorted file that is the result of merging several smaller sorted subfiles.

--
11.7. SELECT OPERATION

 There are many algorithms for executing a SELECT operation, which is basically a

search operation to locate the records in a disk file that satisfy a certain condition. Some of the

search algorithms depend on the file having specific access paths, and they may apply only to

certain types of selection conditions. We discuss some of the algorithms for

implementing SELECT in this section. We will use the following operations, specified on the

relational database in Figure 3.5, to illustrate our discussion:

OP1: σSsn = ‘123456789’ (EMPLOYEE)

OP2: σDnumber > 5 (DEPARTMENT)

OP3: σDno = 5 (EMPLOYEE)
OP4:

σ
Dno = 5 AND Salary > 30000 AND Sex = ‘F’

(EMPLOYEE)

OP5:

σ
Essn=‘123456789’ AND Pno =10

(WORKS_ON)

136

Search Methods for Simple Selection. A number of search algorithms are pos-sible for selecting

records from a file. These are also known as file scans, because they scan the records of a file to

search for and retrieve records that satisfy a selec-tion condition.
4
 If the search algorithm

involves the use of an index, the index search is called an index scan. The following search

methods (S1 through S6) are examples of some of the search algorithms that can be used to

implement a select operation:

 Whenever a single condition specifies the selection—such as OP1, OP2, or OP3— the

DBMS can only check whether or not an access path exists on the attribute involved in that

condition. If an access path (such as index or hash key or sorted file) exists, the method

corresponding to that access path is used; otherwise, the brute force, linear search approach of

method S1 can be used. Query optimization for a SELECToperation is needed mostly for

conjunctive select conditions whenever more than one of the attributes involved in the conditions

have an access path. The optimizer should choose the access path that retrieves the fewest

records in the most efficient way by estimating the different costs (see Section 19.8) and

choosing the method with the least estimated cost.

 Selectivity of a Condition. When the optimizer is choosing between multiple simple

conditions in a conjunctive select condition, it typically considers the selectivity of each

condition. The selectivity (sl) is defined as the ratio of the num-ber of records (tuples) that

satisfy the condition to the total number of records (tuples) in the file (relation), and thus is a

number between zero and one. Zero selec-tivity means none of the records in the file satisfies the

selection condition, and a selectivity of one means that all the records in the file satisfy the

condition. In gen-eral, the selectivity will not be either of these two extremes, but will be a

fraction that estimates the percentage of file records that will be retrieved.

--
11.8. JOIN OPERATION

The JOIN operation is one of the most time-consuming operations in query processing.

Many of the join operations encountered in queries are of the EQUIJOIN and NATURAL

JOIN varieties, so we consider just these two here since we are only giving an overview of query

processing and optimization. For the remainder of this chapter, the term join refers to

an EQUIJOIN (or NATURAL JOIN).

 There are many possible ways to implement a two-way join, which is a join on

two files. Joins involving more than two files are called multiway joins. The number of possible

ways to execute multiway joins grows very rapidly. In this section we dis-cuss techniques for

implementing only two-way joins. The algorithms we discuss next are for a join operation of the

form:

137

Where A and B are the join attributes, which should be domain-compatible attributes of R and S,

respectively. The methods we discuss can be extended to more general forms of join. We

illustrate four of the most common techniques for performing such a join, using the following

sample operations:

Methods for Implementing Joins.

 J1—Nested-loop join (or nested-block join). This is the default (brute force) algorithm, as it

does not require any special access paths on either file in the join. For each record t in R (outer

loop), retrieve every record s from S (inner loop) and test whether the two records satisfy the join

condition t[A] = s[B].

 J2—Single-loop join (using an access structure to retrieve the matching records). If an

index (or hash key) exists for one of the two join attributes— say, attribute B of file S—retrieve

each record t in R (loop over file R), and then use the access structure (such as an index or a hash

key) to retrieve directly all matching records s from S that satisfy s[B] = t[A].

J3—Sort-merge join. If the records of R and S are physically sorted (ordered) by value of

the join attributesA and B, respectively, we can implement the join in the most efficient way

possible. Both files are scanned concurrently in order of the join attributes, matching the records

that have the same values for A and B. If the files are not sorted, they may be sorted first by

using external sorting. In this method, pairs of file blocks are copied into memory buffers in

order and the records of each file are scanned only once each for matching with the other file—

unless both A and B are nonkey attributes, in which case the method needs to be modified

slightly.

 J4—Partition-hash join. The records of files R and S are partitioned into smaller files. The

partitioning of each file is done using the same hashing function h on the join

attribute A of R (for partitioning file R) and Bof S (for partitioning file S). First, a single pass

through the file with fewer records (say, R) hashes its records to the various partitions of R; this

is called the partitioning phase, since the records of R are partitioned into the hash buck-ets. In

the simplest case, we assume that the smaller file can fit entirely in main memory after it is

partitioned, so that the partitioned subfiles of R are all kept in main memory. The collection of

records with the same value of h(A) are placed in the same partition, which is a hash bucket in a

hash table in main memory. In the second phase, called the probing phase, a single pass through

the other file (S) then hashes each of its records using the same hash function h(B) to probe the

appropriate bucket, and that record is combined with all matching records from R in that bucket.

138

This simplified description of partition-hash join assumes that the smaller of the two files fits

entirely into memory buckets after the first phase.

--
11.9. PROJECT AND SET OPERATION

PROJECT & SET operation:

 – If the < attribute list > of the PROJECT operation π (R) includes a key of R, then the

number of tuples in the projection result is equal to the number of tuples in R, but only with the

values for the attributes in < attribute list > in each tuple.

– If the < attribute list > does not contain a key of R, duplicate tuples must be eliminated. The

following methods can be used to eliminate duplication.

 Sorting the result of the operation and then eliminating duplicate tuples.

 Hashing the result of the operation into hash file in memory and check each hashed

record against those in the same bucket; if it is a duplicate, it is not inserted.

A PROJECT operation π<attribute list>(R) is straightforward to implement if <attribute list>

includes a key of relation R, because in this case the result of the operation will have the same

number of tuples as R, but with only the values for the attributes in <attribute list> in each tuple.

If <attribute list> does not include a key of R, duplicate tuples must be eliminated. This can be

done by sorting the result of the operation and then eliminating duplicate tuples, which appear

consecutively after sorting. Set operations—UNION, INTERSECTION, SET DIFFERENCE,

and CARTESIAN PRODUCT—are sometimes expensive to implement. In particular,

the CARTESIAN PRODUCT operation R × S is quite expensive because its result includes a

record for each combination of records from R and S. Also, each record in the result includes all

attributes of R and S. If R has n records and j attributes, and S has m records and k attributes, the

result relation for R × S will have n * m records and each record will have j + k attributes. Hence,

it is important to avoid the CARTESIAN PRODUCT operation and to substitute other operations

such as join during query optimization (see Section 19.7).

The other three set operations—UNION, INTERSECTION, and SET DIFFERENCE
14

—

apply only totype-compatible (or union-compatible) relations, which have the same number of

attributes and the same attribute domains. The customary way to implement these operations is

to use variations of the sort-mergetechnique: the two relations are sorted on the same attributes,

and, after sorting, a single scan through each relation is sufficient to produce the result. For

example, we can implement the UNION operation, R ∪ S, by scanning and merging both sorted

139

files concurrently, and whenever the same tuple exists in both relations, only one is kept in the

merged result. For the INTERSECTION operation, R ∩ S, we keep in the merged result only

those tuples that appear in both sorted relations. Figure 19.3(c) to (e) sketches the

implementation of these operations by sorting and merging. Some of the details are not included

in these algorithms.

--
11.10. AGGREGATE OPERATIONS

The aggregate operators (MIN, MAX, COUNT, AVERAGE, SUM), when applied to an

entire table, can be computed by a table scan or by using an appropriate index, if available. For

example, consider the following SQL query:

SELECT MAX(Salary)

FROM EMPLOYEE;

If an (ascending) B
+
-tree index on Salary exists for the EMPLOYEE relation, then the

optimizer can decide on using the Salary index to search for the largest Salary value in the index

by following the rightmostpointer in each index node from the root to the rightmost leaf. That

node would include the largest Salaryvalue as its last entry. In most cases, this would be more

efficient than a full table scan of EMPLOYEE, since no actual records need to be retrieved.

The MIN function can be handled in a similar manner, except that the leftmost pointer in the

index is followed from the root to leftmost leaf. That node would include the

smallest Salary value as its first entry.

The index could also be used for the AVERAGE and SUM aggregate functions, but only

if it is a dense index—that is, if there is an index entry for every record in the main file. In this

case, the associated computation would be applied to the values in the index. For a nondense

index, the actual number of records associated with each index value must be used for a correct

computation. This can be done if the number of records associated with each value in the index is

stored in each index entry. For the COUNT aggregate function, the number of values can be also

computed from the index in a similar manner. If a COUNT(*) function is applied to a whole

relation, the number of records currently in each relation are typically stored in the catalog, and

so the result can be retrieved directly from the catalog.

When a GROUP BY clause is used in a query, the aggregate operator must be applied

separately to each group of tuples as partitioned by the grouping attribute. Hence, the table must

first be partitioned into subsets of tuples, where each partition (group) has the same value for the

grouping attributes. In this case, the computation is more complex.

140

--
11.11. OUTER JOIN

 The outer join operation was discussed, with its three variations: left outer join, right

outer join, and full outer join.

Outer join can be computed by modifying one of the join algorithms, such as nested-loop

join or single-loop join. For example, to compute a left outer join, we use the left relation as the

outer loop or single-loop because every tuple in the left relation must appear in the result. If there

are matching tuples in the other relation, the joined tuples are produced and saved in the result.

However, if no matching tuple is found, the tuple is still included in the result but is padded

with NULL value(s). The sort-merge and hash-join algorithms can also be extended to compute

outer joins.

Theoretically, outer join can also be computed by executing a combination of relational

algebra operators. For example, the left outer join operation shown above is equivalent to the

following sequence of relational operations:

1. Compute the (inner) JOIN of the EMPLOYEE and DEPARTMENT tables.

TEMP1 ← πLname, Fname, Dname (EMPLOYEE Dno=Dnumber DEPARTMENT)

2. Find the EMPLOYEE tuples that do not appear in the (inner) JOIN result.

TEMP2 ← πLname, Fname (EMPLOYEE) – πLname, Fname (TEMP1)

3. Pad each tuple in TEMP2 with a NULL Dname field.

TEMP2 ← TEMP2 × NULL

 Apply the UNION operation to TEMP1, TEMP2 to produce the LEFT

OUTER JOIN result.

RESULT ← TEMP1 ∪ TEMP2

The cost of the outer join as computed above would be the sum of the costs of the

associated steps (inner join, projections, set difference, and union). However, note that step 3 can

be done as the temporary relation is being constructed in step 2; that is, we can simply pad each

resulting tuple with a NULL. In addition, in step 4, we know that the two operands of the union

are disjoint (no common tuples), so there is no need for duplicate elimination.

141

--
11.12. HEURISTICS IN QUERY OPTIMIZATION

One of the main heuristic rules is to apply SELECT and PROJECT operations before applying

the JOIN or other binary operations, because the size of the file resulting from a binary

operation—such as JOIN—is usually a multiplicative function of the sizes of the input files.

The SELECT and PROJECT operations reduce the size of a file and hence should be

applied before a join or other binary operation.

 A query tree is a tree data structure that corresponds to a relational algebra expression. It

represents the input relations of the query as leaf nodes of the tree, and rep-resents the relational

algebra operations as internal nodes. An execution of the query tree consists of executing an

internal node operation whenever its operands are available and then replacing that internal node

by the relation that results from executing the operation. The order of execution of

operations starts at the leaf nodes, which represents the input database relations for the query,

and ends at the root node, which represents the final operation of the query. The execution

terminates when the root node operation is executed and produces the result relation for the

query.

 The query graph representation does not indicate an order on which operations to perform

first. There is only a single graph corresponding to each query. Although some optimization

techniques were based on query graphs, it is now generally accepted that query trees are

preferable because, in practice, the query optimizer needs to show the order of operations for

query execution, which is not possible in query graphs.

In general, many different relational algebra expressions—and hence many different

query trees—can be equivalent; that is, they can represent the same query.

Outline of a Heuristic Algebraic Optimization Algorithm.

The steps of the algorithm are as follows:

1. Using Rule 1, break up any SELECT operations with conjunctive conditions into a

cascade of SELECT operations. This permits a greater degree of freedom in

moving SELECT operations down different branches of the tree.

2. Using Rules 2, 4, 6, and 10 concerning the commutatively of SELECT with other

operations, move each SELECT operation as far down the query tree as is permitted by

the attributes involved in the select condition. If the condition involves attributes

from only one table, which means that it represents a selection condition, the operation is

moved all the way to the leaf node that represents this table. If the condition involves

attributes from two tables, which means that it represents a join condition, the condition

is moved to a location down the tree after the two tables are combined.

142

3. Using Rules 5 and 9 concerning commutativity and associativity of binary operations,

rearrange the leaf nodes of the tree using the following criteria. First, position the leaf

node relations with the most restrictive SELECT operations so they are executed first in

the query tree representation. The definition of most restrictive SELECT can mean either

the ones that produce a relation with the fewest tuples or with the smallest absolute

size.
17

 Another possibility is to define the most restrictive SELECT as the one with the

small-est selectivity; this is more practical because estimates of selectivities are often

available in the DBMS catalog. Second, make sure that the ordering of leaf nodes does

not cause CARTESIAN PRODUCT operations; for example, if the two relations with the

most restrictive SELECT do not have a direct join condition between them, it may be

desirable to change the order of leaf nodes to avoid Cartesian products.

4. Using Rule 12, combine a CARTESIAN PRODUCT operation with a

subsequent SELECT operation in the tree into a JOIN operation, if the condition

represents a join condition.

5. Using Rules 3, 4, 7, and 11 concerning the cascading of PROJECT and the commuting of

PROJECT with other operations, break down and move lists of projection attributes

down the tree as far as possible by creating new PROJECT operations as needed. Only

those attributes needed in the query result and in subsequent operations in the query tree

should be kept after each PROJECT operation.

6. Identify subtrees that represent groups of operations that can be executed by a single

algorithm.

--
11.13. SEMANTIC QUERY OPTIMIZATION

 A different approach to query optimization, called semantic query optimization, has been

suggested. This technique, which may be used in combination with the techniques discussed

previously, uses constraints specified on the database schema—such as unique attributes and

other more complex constraints—in order to modify one query into another query that is more

efficient to execute.

Consider the SQL query:

SELECT E.Lname, M.Lname

FROM EMPLOYEE AS E, EMPLOYEE AS M

WHERE E.Super_ssn=M.Ssn AND E.Salary > M.Salary

143

This query retrieves the names of employees who earn more than their supervisors.

Suppose that we had a constraint on the database schema that stated that no employee can earn

more than his or her direct supervisor. If the semantic query optimizer checks for the existence of

this constraint, it does not need to execute the query at all because it knows that the result of the

query will be empty. This may save considerable time if the constraint checking can be done

efficiently. However, searching through many constraints to find those that are applicable to a

given query and that may semantically optimize it can also be quite time-consuming. With the

inclusion of active rules and additional metadata in database systems (see Chapter 26), semantic

query optimization techniques are being gradually incorporated into the DBMSs.

--
11.14. CONVERTING QUERY TREE TO QUERY EVALUATION PLAN

 When a query is submitted to DB, it is parsed and translated to relational algebra. It is

verified for its validity and correctness. Once it passes this stage, different ways of evaluating the

query is generated. It is checked for various factors and its execution plan is generated. It may be

based on cost of the query or based on the equivalence rules. Once cost based execution and rule

based execution plans are generated, optimizer has to decide, which plan to be selected for

evaluation. This is the most important step in processing a query.

 They are all general guidelines to evaluate a query. There are lot many factors affecting

the performance of a query. The evaluation plans exactly defines the system which plan /

algorithm is to be used to evaluate, which index to be used etc.

SELECT EMP_ID, DEPT_NAME FROM EMP, DEPT WHERE EMP.DEPT_ID =

DEPT.DEPT_ID

AND EMP.DEPT_ID = 10 AND EMP.EMP_LAST_NAME = ‘Joseph’

Above query selects the EMP_ID and DEPT_NAME from EMP and DEPT table for

DEPT_ID = 10 with employee’s last name as ‘Joseph’. But when it is given to the DBMS, it

divides the query into tokens and sees how it can be put together so that performance will be

better. This is the duty of query optimizer. But altering the order of tokens in the query should

not change the result. In either way it should give same result. Order of records can change and

are least important. This is called equivalent query. There is set of rules to put tokens in the

query. This is called equivalence rule.

 Select the records of EMP with DEPT_ID = 10 and EMP_LAST_NAME =

‘Joseph’ first then join them with DEPT table to get all matching records of EMP

144

and DEPT. Then select only the columns EMP_ID and DEPT_NAME to display

the result.

 Select all matching records from EMP and DEPT, from which filter on DEPT_ID

= 10 and EMP_LAST_NAME = ‘Joseph’ and then select only EMP_ID and

DEPT_NAME to display.

 Select all matching records from EMP and DEPT, from which select only EMP_ID

and DEPT_NAME and then filter on DEPT_ID = 10 and EMP_LAST_NAME =

‘Joseph’ and then.

The optimizer can produce relational expression and tree in above three formats.

According to evaluation rule, the first query seems to be the best one. But considering other

factors of tables, other plans may also be efficient.

--
11.15. COST ESTIMATES IN QUERY OPTIMIZATION

 This approach is generally referred to as cost-based query optimization. It uses

traditional optimization techniques that search the solution space to a problem for a solution that

minimizes an objective (cost) function. The cost functions used in query optimization are

estimates and not exact cost functions, so the optimization may select a query execution strategy

that is not the optimal (absolute best) one.

The cost of executing a query includes the following components:

Access cost to secondary storage. This is the cost of transferring (reading and writing) data

blocks between secondary disk storage and main memory buffers. This is also known as disk I/O

(input/output) cost. The cost of search-ing for records in a disk file depends on the type of access

structures on that file, such as ordering, hashing, and primary or secondary indexes. In addi-tion,

factors such as whether the file blocks are allocated contiguously on the same disk cylinder or

scattered on the disk affect the access cost.

Disk storage cost. This is the cost of storing on disk any intermediate files that are generated by

an execution strategy for the query.

Computation cost. This is the cost of performing in-memory operations on the records within

the data buffers during query execution. Such operations include searching for and sorting

records, merging records for a join or a sort operation, and performing computations on field

values. This is also known as CPU (central processing unit) cost.

Memory usage cost. This is the cost pertaining to the number of main memory buffers needed

during query execution.

 Communication cost. This is the cost of shipping the query and its results from the database

site to the site or terminal where the query originated. In distributed databases, it would also

145

include the cost of transferring tables and results among various computers during query

evaluation.

For large databases, the main emphasis is often on minimizing the access cost to

secondary storage. Simple cost functions ignore other factors and compare different query

execution strategies in terms of the number of block transfers between disk and main memory

buffers. For smaller databases, where most of the data in the files involved in the query can be

completely stored in memory, the emphasis is on minimizing computation cost.

11.15.1. Measures of Query Cost

 There are many possible ways to estimate cost, e.g., based on disk accesses, CPU time, or

communication overhead.

 Disk access is the predominant cost (in terms of time); relatively easy to estimate;

therefore, number of block transfers from/to disk is typically used as measure. –

Simplifying assumption: each block transfer has the same cost.

 Cost of algorithm (e.g., for join or selection) depends on database buffer size; more

memory for DB buffer reduces disk accesses. Thus DB buffer size is a parameter for

estimating cost.

 We refer to the cost estimate of algorithm S as cost(S). We do not consider cost of

writing output to disk.

11.15.2. Catalog information for Cost estimation of Queries

The main aim of query optimization is to choose the most efficient way of implementing

the relational algebra operations at the lowest possible cost. Therefore, the query optimizer

should not depend solely on heuristics rules, but, it should also estimate the cost of executing the

different strategies and find out the strategy with the minimum cost estimate. The method of

optimizing the query by choosing a strategy those results in minimum cost is called cost-based

query optimization.

Information about relations and attributes:

 NR: number of tuples in the relation R.

 BR: number of blocks that contain tuples of the relation R.

 SR: size of a tuple of R.

 FR: blocking factor; number of tuples from R that fit into one block (FR = dNR/BRe)

 V(A, R): number of distinct values for attribute A in R.

 SC(A, R): selectivity of attribute A ≡ average number of tuples of R that satisfy an

equality condition on A. SC(A, R) = NR/V(A, R).

Information about indexes:

 HTI: number of levels in index I (B+-tree).

 LBI: number of blocks occupied by leaf nodes in index I (first-level blocks).

 ValI: number of distinct values for the search key.

146

--
11.16. JOIN STRATEGIES FOR PARALLEL PROCESSING

Without the parallel query feature, the processing of a SQL statement is always

performed by a single server process. With the parallel query feature, multiple processes can

work together simultaneously to process a single SQL statement. This capability is

called parallel query processing. By dividing the work necessary to process a statement among

multiple server processes, the Oracle Server can process the statement more quickly than if only

a single server process processed it.

The parallel query feature can dramatically improve performance for data-intensive

operations associated with decision support applications or very large database environments.

Symmetric multiprocessing (SMP), clustered, or massively parallel systems gain the largest

performance benefits from the parallel query feature because query processing can be effectively

split up among many CPUs on a single system.

It is important to note that the query is parallelized dynamically at execution time. Thus,

if the distribution or location of the data changes, Oracle automatically adapts to optimize the

parallelization for each execution of a SQL statement.

The parallel query feature helps systems scale in performance when adding hardware

resources. If your system's CPUs and disk controllers are already heavily loaded, you need to

alleviate the system's load before using the parallel query feature to improve performance.

When a statement is parsed, the optimizer determines the execution plan of a

statement. After the optimizer determines the execution plan of a statement, the query

coordinator process determines the parallelization method of the statement. Parallelization is the

process by which the query coordinator determines which operations can be performed in

parallel and then enlists query server processes to execute the statement. Each query undergoes

an optimization and parallelization process when it is parsed. Therefore, when the data changes,

if a more optimal execution plan or parallelization plan becomes available,

Traditionally, join strategies are classified in the following dimensions:

 Join types, which characterize the semantics of the join, and include cross join (Cartesian

product), inner join (equi-join, natural join), outer join (left, right, and full outer join) and

semi-join (left and right semi-join).

 Join algorithms, which are different ways to implement a logical join operator, and

include nested-loop joins, sort-based joins, and hash-based joins. In addition, auxiliary

data structures, such as secondary indexes, join indexes, bitmap indexes, bloom filters,

are introduced to further improve the basic join algorithms (e.g., indexed loop join,

indexed sort-merge join, and distributed semi-join).

147

 Join tree shapes, which are relevant when performing multiple joins, and characterize the

shape of the join tree, such as left-deep, right-deep, and bushy trees.

--
11.17. PARALLEL JOIN

The Parallel Join is a feature of the server SQL Planner that decreases the processing time

that is required to create a pairwise join between two server tables. The savings in processing

time is created when the server performs the pairwise join in parallel.

The SQL Planner first searches for pairs when the server source tables are to be joined.

When the Planner finds a pair, it checks the join syntax for that pair to determine whether the

syntax meets all of the requirements for the Parallel Join. If the join syntax meets the

requirements, the pair of tables are joined by the Parallel Join.

The criteria for using the server Parallel Join facility can be more complex than simply

requiring a pairwise join of two server tables. The Parallel Join facility can handle multiple

character columns, numeric columns, or combinations of character and numeric columns that are

joined between pairs of tables.

Several ways of the join can be implemented efficiently on a sequential machine. An

additional possibility is to parallelize the join.

 Fragment-and-replicate,

 Symmetric partitioning.

Many of the techniques found in commercial DBMS products fall into these two categories.

The fragment-and-replicate (f-a-r) strategy partitions only one relation and replicates the other

for joining it with each fragment:

(

8)

This method is particularly useful if R is huge and Q is small. This is a situation that occurs in

what is frequently referred to as a star-join [Red Brick Systems, 1995b]. An advantage is that

there are no constraints on the Rk. Any partition of R into subsets will suit,

especially a partition of R that might reside on the disks in the case of a parallel I/O system. This

also means that this technique need not be affected by data skew . For this reason, load

balancing is fairly easy to achieve.

The major drawback, however, is that Q is required to be small in order to keep

replication costs marginal. If this is not the case then shipping Q over the interconnect of the

parallel hardware can become the major bottleneck.

http://www.dcs.ed.ac.uk/home/tz/phd/thesis/node147.htm#RedBrick95c

148

Depending on the join algorithm that is employed for processing the partial

joins we get various search patterns.

A more general, but also more delicate parallel joining technique is based on symmetric

partitioning where all participating relations are partitioned. We have encountered this method

already in the discussion of the Grace hash join. Symmetric partitioning splits one `big' join into

several smaller and independent ones:

(

9)

Where the Rk and Qk are referred to as fragments of the relations R and Q, respectively.

--
11.18. PIPELINED MULTI WAY JOIN

 In general, the database query processing and optimization process takes queries in a

declarative language as input and generates query execution plans (QEPs). By executing those

plans, the results of queries are obtained and delivered to the user.

 A parser is used to validate the input queries. The validated query is first transformed into

some semantically equivalent internal representation form such as a join graph. During this

transformation, some heuristic rules can be applied, such as push selection down as much as

possible and perform projections as soon as possible. The join graph, together with statistics

about the participating relations and available join methods, are sent to the core component, the

plan optimizer, to generate the final query execution plan. The major function of this plan

optimizer is to select an optimal or near-optimal query execution plan among all feasible ones

based on some optimization objectives.

 Multi-way join queries are usually treated as a sequence of two-way joins. Two essential

tasks of the plan optimizer are to select

 The order in which the joins are performed, and

 An appropriate join method for each joins operation to achieve some pre-delined

optimization objectives. In a multiprocessor system, however, there are more dimensions

in the search space for optimization if both interand intra-join parallelisms are to be

explored. In addition to the above two tasks, the plan optimizer must also determine.

 The number of joins to be executed concurrently and the relations participating in each of

these joins, and

 The number of processors allocated to each of the concurrent joins operations. Hence,

optimization of a query becomes more expensive and complicated in multiprocessor

environment.

149

One of the major task of a query optimizer is to determine the method for each join to be

performed since there are usually a number of ways to perform a particular join with different

costs. In the multiprocessor environment, the selection of join methods becomes more complex.

First, the number of join methods increases. For uniprocessor system, the sort-merge join, nested

loops join and hash-based join are three major join methods. In a multiprocessor system, each of

these methods has a number of variations with different performance. Second, there are more

parameters that affect the cost of a join in multiprocessor systems than in uniprocessor systems,

such as number of processors participating in the join and the architecture of the system.

Performance of different parallel join methods is analyzed. In general, the cost of a parallel join

method is a function of the two relations to be joined and the number of processors participating

in the join.

--
11.19. PHYSICAL ORGANIZATION

 The goal of a database system is to simplify and facilitate access to data. The users of the

system should not be burdened with the physical details of the implementation of the system.

Databases are stored physically on storage devices and organised as files and records. The

overall performance of a database system is determined by the physical database organisation.

Therefore, it is important that the physical organisation of data is efficiently managed.

--
11.20. LET US SUM UP

 In this unit, you have learnt about query processing operations like external sorting,

SELECT operation, join operation, project and set operation etc. and query optimization

techniques. Thus, the query processing and optimization unit would have brought you to closer

to know the concept of query processing techniques and query optimization techniques like

parallel processing and pipelined processing.

--
11.21. UNIT – END QUESTIONS

1. List out the operations of query processing.

2. Write about the techniques for query optimization.

150

--
10.22. ANSWER TO CHECK YOUR PROGRESS

1. The main goal of creating a database is to store the related data at one place, access and

manipulate them as and when it is required by the user. Accessing and manipulating the data

should be done efficiently i.e.; it should be accessed easily and quickly.

The different steps of processing a high-level query are as follows.

The query optimizer module has the task of producing a good execution plan, and the code

generator generates the code to execute that plan. The runtime database processor has the

task of running (executing) the query code, whether in compiled or interpreted mode, to

produce the query result. If a runtime error results, an error message is generated by the

runtime database processor. The query processing operations are, external sorting, SELECT

operation, join operation, aggregate operation, project and set operation.

2. This approach is generally referred to as cost-based query optimization. It uses traditional

optimization techniques that search the solution space to a problem for a solution that

minimizes an objective (cost) function. The cost functions used in query optimization are

estimates and not exact cost functions, so the optimization may select a query execution

strategy that is not the optimal (absolute best) one.

The cost of executing a query includes the following components:

 Access cost to secondary storage.

 Disk storage cost.

 Computation cost.

 Memory usage cost.

 Communication cost.

The major query optimization techniques are, parallel process and pipelined process of query.

151

--
UNIT XII – DISTRIBUTED DATABASE & MAPPING

CARDNALITIES

Structure

UNIT XII – DISTRIBUTED DATABASE & MAPPING CARDNALITIES
12.1. Introduction

12.2. Objective

12.3. Distributed databases

12.3.1. Structure of Distributed Database

12.3.2. Trade-offs in Distributing the Database

12.3.3. Advantages of Data Distribution

12.3.4. Disadvantages of Data Distribution

12.3.5. Design of Distributed databases

12.4. Data Replication

12.5. Data Fragmentation

12.6. Let Us Sum Up

12.7. Unit – End Exercises

12.8. Answer to Check Your Progress

--
12.1. INTRODUCTION

In this lesson you will be know about the concept of distributed databases and its

advantages and design structure, Data replication and data fragmentation. This distribution

database concept elaborates the structure and advantages and disadvantages of distributed

database and mapping carnalities like replication and fragmentation process also.

--
12.2. OBJECTIVES

After going through this lesson you will be in a position to

 Explain distributed database functions.

 Define data replication.

 Define Data Fragmentation.

152

--
12.3. DISTRIBUTED DATABASES

 In a distributed database, there are a number of databases that may be geographically

distributed all over the world. A distributed DBMS manages the distributed database in a

manner so that it appears as one single database to users. In the later part of the chapter, we go

on to study the factors that lead to distributed databases, its advantages and disadvantages.

A distributed database is a collection of multiple interconnected databases, which are

spread physically across various locations that communicate via a computer network.

 Distributed database is a system in which storage devices are not connected to a common

processing unit.

 Database is controlled by Distributed Database Management System and data may be

stored at the same location or spread over the interconnected network. It is a loosely

coupled system.

 Shared nothing architecture is used in distributed databases.

Goals of Distributed Database system

The concept of distributed database was built with a goal to improve:

 Reliability: In distributed database system, if one system fails down or stops working for

some time another system can complete the task.

 Availability: In distributed database system reliability can be achieved even if sever fails

down. Another system is available to serve the client request.

 Performance: Performance can be achieved by distributing database over different

locations. So the databases are available to every location which is easy to maintain.

A distributed database appears to a user as a single database but is, in fact, a set of databases

stored on multiple computers. The data on several computers can be simultaneously accessed and

modified using a network. Each database server in the distributed database is controlled by its

local DBMS, and each cooperates to maintain the consistency of the global database.

12.3.1. Structure of Distributed Database

 When in a collection, distributed databases are logically interrelated with each other, and

they often represent a single logical database. With distributed databases, data is physically

stored across multiple sites and independently managed.

The basic types of distributed DBMS are as follows:

1. Client-server architecture of Distributed system.

 Client server architecture has a number of clients and a few servers connected in a

network.

153

 A client sends a query to one of the servers. The earliest available server solves it and

replies.

 Client-server architecture is simple to implement and execute due to centralized server

system.

Figure 17: - Client – Server Architecture

2. Collaborating server architecture.

 Collaborating server architecture is designed to run a single query on multiple servers.

 Servers break single query into multiple small queries and the result is sent to the client.

 Collaborating server architecture has a collection of database servers. Each server is

capable for executing the current transactions across the databases.

Figure 18: - Collaborating Server Architecture

154

3. Middleware architecture.

 Middleware architectures are designed in such a way that single query is executed on

multiple servers.

 This system needs only one server which is capable of managing queries and transactions

from multiple servers.

 Middleware architecture uses local servers to handle local queries and transactions.

 The software’s are used for execution of queries and transactions across one or more

independent database servers; this type of software is called as middleware.

12.3.2. Trade-offs in Distributing the Database

 In distributed database system data is spread across multiple sites connected via some

sort of communication network system. In a distributed database data can be stored where it is

mostly used yet it provides seamless access to data stored at remote sites. From user point of

view using distributed database should be quite similar to using local or centralized database.

Distribution increases database complexity.

One of the trade-off in distributed databases (DBs) is between high availability and data

consistency. Database replication techniques aim at achieving consistency across different nodes,

but as a system grows in size, availability becomes an issue.

Replication enhances system performance when clients can operate with local copies.

Replication means also better availability; data will be available for processing so long as at least

one copy of it remains available. Updates of the data items needs to be propagated to all replica

copies. Only two of the following three properties can be achieved at the same time:

 Data consistency,

 System availability,

Consistency requires that the requests act as if they were executing on a single node, one at a

time. Availability means that every request received by a non-failing node must result in a

response (there is no bound on the response time here). To model partition tolerance, the network

is allowed to lose arbitrarily many messages sent from one node to another.

In large databases used for web services, network partitions are a fact, and therefore complete

consistency and system availability cannot be achieved at the same time in general. If a system

emphasizes consistency, it may not always be available to take a write. If it emphasizes

availability, a read might not always return the most recently completed write. Depending on the

application, one might decide to give priority to one property over the other.

12.3.3. Advantages of Data Distribution

Following are the advantages of distributed databases over centralized databases.

 Modular Development − If the system needs to be expanded to new locations or new

units, in centralized database systems, the action requires substantial efforts and

http://en.wikipedia.org/wiki/Replication_(computer_science)#Database_replication

155

disruption in the existing functioning. However, in distributed databases, the work

simply requires adding new computers and local data to the new site and finally

connecting them to the distributed system, with no interruption in current functions.

 More Reliable − In case of database failures, the total system of centralized databases

comes to a halt. However, in distributed systems, when a component fails, the

functioning of the system continues may be at a reduced performance. Hence DDBMS is

more reliable.

 Better Response − If data is distributed in an efficient manner, then user requests can be

met from local data itself, thus providing faster response. On the other hand, in

centralized systems, all queries have to pass through the central computer for processing,

which increases the response time.

 Lower Communication Cost − In distributed database systems, if data is located locally

where it is mostly used, then the communication costs for data manipulation can be

minimized. This is not feasible in centralized systems.

 Management of distributed data with different levels of transparency like network

transparency, fragmentation transparency, replication transparency, etc.

 Increase reliability and availability.

 Easier expansion.

 Reflects organizational structure — database fragments potentially stored within the

departments they relate to.

12.3.4. Disadvantages of Data Distribution

 Complexity — DBAs may have to do extra work to ensure that the distributed nature of

the system is transparent. Extra work must also be done to maintain multiple disparate

systems, instead of one big one. Extra database design work must also be done to account

for the disconnected nature of the database — for example, joins become prohibitively

expensive when performed across multiple systems.

 Economics — increased complexity and a more extensive infrastructure means extra

labour costs

 Security — remote database fragments must be secured, and they are not centralized so

the remote sites must be secured as well. The infrastructure must also be secured (for

example, by encrypting the network links between remote sites).

 Difficult to maintain integrity — but in a distributed database, enforcing integrity over a

network may require too much of the network's resources to be feasible

 Inexperience — distributed databases are difficult to work with, and in such a young field

there is not much readily available experience in "proper" practice

 Lack of standards — there are no tools or methodologies yet to help users convert a

centralized DBMS into a distributed DBMS

https://en.wikipedia.org/wiki/Database_administrator
https://en.wikipedia.org/wiki/Disparate_system
https://en.wikipedia.org/wiki/Disparate_system

156

 Database design more complex — In addition to traditional database design challenges,

the design of a distributed database has to consider fragmentation of data, allocation of

fragments to specific sites and data replication

 Additional software is required

 Operating system should support distributed environment

 Concurrency control poses a major issue. It can be solved by locking and time stamping.

 Distributed access to data

 Analysis of distributed data

12.3.5. Design of Distributed databases
 Here, we had introduced different design alternatives. we will study the strategies that aid

in adopting the designs. The strategies can be broadly divided into replication and fragmentation.

However, in most cases, a combination of the two is used. Distributed databases can be classified

into homogeneous and heterogeneous databases having further divisions.

In a homogenous distributed database system, all the physical locations have the same

underlying hardware and run the same operating systems and database

applications. Homogenous distributed database systems appear to the user as a single system,

and they can be much easier to design and manage. For a distributed database system to be

homogenous, the data structures at each location must be either identical or compatible. The

database application used at each location must also be either identical or compatible.

In a heterogeneous distributed database, the hardware, operating systems or database

applications may be different at each location. Different sites may use different schemas and

software, although a difference in schema can make query and transaction processing difficult.

There are two principal approaches to store a relation r in a distributed database system:

1. Data Replication.

2. Data Fragmentation.

--
12.4. DATA REPLICATION

Data replication is the process of storing separate copies of the database at two or more

sites. It is a popular fault tolerance technique of distributed databases.

In replication, the system maintains several identical replicas of the same relation r in different

sites.

 Data is more available in this scheme.

 Parallelism is increased when read request is served.

 Increases overhead on update operations as each site containing the replica needed to be

updated in order to maintain consistency.

https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Lock_(database)
https://en.wikipedia.org/wiki/Timestamp-based_concurrency_control
https://searchsqlserver.techtarget.com/definition/schema

157

 Multi-datacenter replication provides geographical diversity.

Fully Replicated

In this design alternative, at each site, one copy of all the database tables is stored. Since,

each site has its own copy of the entire database, queries are very fast requiring negligible

communication cost. On the contrary, the massive redundancy in data requires huge cost during

update operations. Hence, this is suitable for systems where a large number of queries is

required to be handled whereas the number of database updates is low.

Partially Replicated

Copies of tables or portions of tables are stored at different sites. The distribution of the

tables is done in accordance to the frequency of access. This takes into consideration the fact

that the frequency of accessing the tables vary considerably from site to site. The number of

copies of the tables (or portions) depends on how frequently the access queries execute and the

site which generate the access queries.

Advantages of Data Replication

 Reliability − In case of failure of any site, the database system continues to work since a

copy is available at another site(s).

 Reduction in Network Load − Since local copies of data are available, query processing

can be done with reduced network usage, particularly during prime hours. Data updating

can be done at non-prime hours.

 Quicker Response − Availability of local copies of data ensures quick query processing

and consequently quick response time.

 Simpler Transactions − Transactions require less number of joins of tables located at

different sites and minimal coordination across the network. Thus, they become simpler

in nature.

Some commonly used replication techniques are −

 Snapshot replication

 Near-real-time replication

 Pull replication

--
12.5. DATA FRAGMENTATION

Fragmentation is the task of dividing a table into a set of smaller tables. The subsets of

the table are called fragments. Fragmentation can be of three types: horizontal, vertical, and

hybrid (combination of horizontal and vertical). Horizontal fragmentation can further be

classified into two techniques: primary horizontal fragmentation and derived horizontal

fragmentation.

158

Fragmentation should be done in a way so that the original table can be reconstructed

from the fragments. This is needed so that the original table can be reconstructed from the

fragments whenever required. This requirement is called “reconstructiveness.”

Advantages of Fragmentation

 Since data is stored close to the site of usage, efficiency of the database system is

increased.

 Local query optimization techniques are sufficient for most queries since data is locally

available.

 Since irrelevant data is not available at the sites, security and privacy of the database

system can be maintained.

Vertical fragmentation

Vertical fragmentation, the fields or columns of a table are grouped into fragments. In

order to maintain reconstructiveness, each fragment should contain the primary key field(s) of

the table. Vertical fragmentation can be used to enforce privacy of data.

Horizontal fragmentation

Horizontal fragmentation groups the tuples of a table in accordance to values of one or

more fields. Horizontal fragmentation should also confirm to the rule of reconstructiveness. Each

horizontal fragment must have all columns of the original base table.

Hybrid Fragmentation

In hybrid fragmentation, a combination of horizontal and vertical fragmentation

techniques are used. This is the most flexible fragmentation technique since it generates

fragments with minimal extraneous information. However, reconstruction of the original table is

often an expensive task.

Hybrid fragmentation can be done in two alternative ways −

 At first, generate a set of horizontal fragments; then generate vertical fragments from one

or more of the horizontal fragments.

 At first, generate a set of vertical fragments; then generate horizontal fragments from one

or more of the vertical fragments.

--
12.6. LET US SUM UP

 In this unit, you have learnt about the distributed databases and its structure and design,

advantages and disadvantages, data replication, data fragmentation Thus, the distributed

databases and mapping carnalities unit would have brought you to closer to know the concept of

distributed databases and its functions

159

--
12.7. UNIT – END QUESTIONS

1. Examine the functions of distributed databases.

2. Describe the process of data replication.

3. Describe the process of data fragmentation.

--
12.8. ANSWER TO CHECK YOUR PROGRESS

1. A distributed database is a collection of multiple interconnected databases, which are spread

physically across various locations that communicate via a computer network. Distributed

database is a system in which storage devices are not connected to a common processing

unit. Database is controlled by Distributed Database Management System and data may be

stored at the same location or spread over the interconnected network. It is a loosely coupled

system. Shared nothing architecture is used in distributed databases.

 Client-server architecture of Distributed system.

 Collaborating server architecture

 Middleware architecture

2. Data replication is the process of storing separate copies of the database at two or more sites.

It is a popular fault tolerance technique of distributed databases. In replication, the system

maintains several identical replicas of the same relation r in different sites.

 Data is more available in this scheme.

 Parallelism is increased when read request is served.

 Increases overhead on update operations as each site containing the replica needed to

be updated in order to maintain consistency.

 Multi-datacenter replication provides geographical diversity.

Fully Replicated

 In this design alternative, at each site, one copy of all the database tables is stored.

Partially Replicated

 Copies of tables or portions of tables are stored at different sites. The distribution of the

tables is done in accordance to the frequency of access. This takes into consideration the fact

that the frequency of accessing the tables vary considerably from site to site.

3. Fragmentation is the task of dividing a table into a set of smaller tables. The subsets of the

table are called fragments. Fragmentation can be of three types: horizontal, vertical, and

160

hybrid (combination of horizontal and vertical). Horizontal fragmentation can further be

classified into two techniques: primary horizontal fragmentation and derived horizontal

fragmentation. Fragmentation should be done in a way so that the original table can be

reconstructed from the fragments. This is needed so that the original table can be

reconstructed from the fragments whenever required. This requirement is called

“reconstructiveness.”

161

--
UNIT XIII – OBJECT ORIENTED DBMS

Structure

UNIT XIII – OBJECT ORIENTED DBMS
13.1. Introduction

13.2. Objective

13.3. Next Generation Database System

13.4. New Database Application

13.5. Object Oriented Database Management System

13.6. Features of Object Oriented System

13.7. Advantages of Object Oriented Database Management System

13.8. Deficiencies of Relational Database Management System

13.9. Difference between RDBMS and OODBMS

13.10. Alternative Object Oriented Database Strategies

13.11. Let Us Sum Up

13.12. Unit – End Exercises

13.13. Answer to Check Your Progress

--
13.1. INTRODUCTION

In this lesson you will be know about the up gradation of database concept in next level.

The next generation database system brings a new type database management system called

object oriented database management system. This lesson will make you understand about the

object oriented concept implement in DBMS.

--
13.2. OBJECTIVES

After going through this lesson you will be in a position to

 Explain next generation database management system.

 Explain features and advantages of object oriented DBMS.

 Compare the RDBMS & OODBMS.

162

--
13.3. NEXT GENERATION DATABASE SYSTEM

 To understand the opportunities and related requirements for DBMS technology consider

the potential technological environment and potential applications. The American National

Science Foundation sees five new technologies as being the most influential in shaping our

future: massive computing power (e.g., supercomputers), massive storage capacity (e.g., optical

storage), far reaching sensor technology, neural nets, and powerful personal workstations. These

technologies will change the infrastructure of science, technology, business, and home life.

Mathematicians, medical researchers, engineers, scientists, office workers, shopkeepers, and

homemakers will use computers as assistants or even guides in their tasks.

New application domains (e.g., multimedia, geographic information systems, office and

factory automation, telecommunications automation, automation of business, consumer

functions, entertainment, and education) and new computing paradigms and requirements (e.g.,

distributed, collaborative or group work; integrated or global information systems; the need to

compute across organizational and geographic boundaries, and to use existing and new

computing resources in combination) illustrate potential next generation applications. Desktop or

kitchen counter workstations will provide access to vast libraries of sophisticated tools,

knowledge, and massive amounts of information. The libraries will exist, transparent to the user,

on their workstation and via advanced communications, on millions of computers throughout the

world. These future technologies and applications will not only affect the way people interact

with machines, but will also affect the ways that people interact with each other.

 Future database languages will be general purpose programming languages, transparently

supported by traditional database amenities such as persistence and concurrency control. The

next generation of such languages will have an open architecture which will simplify the addition

of new languages. Hence, there will be a host of compatible database programming languages.

The next generation of database programming languages can be classified along two axes. The

first axis is for the data representation paradigm with relational at one extreme and OO at the

other.

At the logical level in the relational paradigm, data is grouped by properties. For instance,

information regarding the same person may be split among different relations, such as EMP,

MGR, PROJ, each describing different properties of persons. But, records pertaining different

persons but addressing the same property (e.g. project assigned to the person) will be grouped

together in one relation (PROJ here). At the logical level in the OO paradigm, data is grouped by

objects. The second axis is for the programming paradigm with declarative and the imperative

programming modes at the extremes.

Among the four classes of languages, the DOOD class is particularly important, since it

has the benefits of declarative and OO paradigms. The declarative paradigm is specificational,

163

high-level, extensible, modifiable, and easy to understand. The OO paradigm provides the

richness of object structure and offers the potential of integration, through methods, with other

languages. These benefits have been proven in several different contexts.

--
13.4. NEW DATABASE APPLICATION

 Both hypothesized directions are desirable and probable The primary challenge is

integration which may be addressed with the OO approach. Next generation DBMSs (e.g.,

multimedia databases) call for the integration of all approaches to databases. Different

approaches to databases are appropriate for different problems. Some requirements of a

multimedia electronic library include: multiple data types on various media; complex data

structures; integration of multiple databases; integration of database and programming

languages; access to remote data; deduction capabilities; and temporal and spatial semantics and

data. OO DBMSs are being used to address the first four challenges. Deductive capabilities are

needed in most applications (e.g., in each database in a multimedia application). Hence, they

should be integrated with the other approaches. It may be appropriate to enhance particular

approaches depending on the intended application domain. For example, relational DBMSs are

appropriate for business data processing whereas OO DBMSs may not be appropriate. OO may

be better suited for non-business data processing (e.g., CAD) and may be difficult to integrate

with traditional data processing languages.

OO will play a large role in both directions and in the integration of the approaches.

Given the large number of reasonable OO data models and their differences (e.g., classes versus

types), it is too early to identify a standard OO data model. The widespread use of C++ may

make it a de facto OO data model/language standard. Hence, it may be important to explore

language independent approaches to OO data model definition or the development of a multi-

paradigm approach.

--
13.5. OBJECT ORIENTED DATABASE MANAGEMENT SYSTEM

Object oriented database systems are alternative to relational database and other database

systems. In object oriented database, information is represented in the form of objects.

Object oriented databases are exactly same as object oriented programming languages. If

we can combine the features of relational model (transaction, concurrency, recovery) to object

oriented databases, the resultant model is called as object oriented database model.

164

An object-oriented database management system (also known simply as an object

database) is a DBMS where data is represented in the form of objects, as used in object-oriented

programming.

In contrast to relational database management systems (RDBMSs), where data is stored

in tables with rows and columns, an object-oriented database stores complex data and

relationships between data directly, without mapping to relational rows and columns.

One benefit of object-oriented databases is that, when it’s integrated with an object-

oriented programming language, there is a much greater consistency between the database and

the programming language. Both use the same model of representation for the data.

This is in contrast to a relational database, where, there’s a distinct difference between the

database model and the programming model. Some OODBMSs are designed to work with other

programming languages (such as Java, Python, Perl, Delphi, Ruby, C#, Visual Basic .NET,

C++, etc). Others have their own proprietary language.

Some DBMS are a hybrid of OODBMS and RDBMS, and are therefore referred to as

object-relational databases (ORD) or object-relational database management system

(ORDBMS).

Characteristics of Object oriented database

The characteristics of object oriented database are listed below.

 It keeps up a direct relation between real world and database objects as if objects do not

loose their integrity and identity.

 OODBs provide system generated object identifier for each object so that an object can

easily be identified and operated upon.

 OODBs are extensible, which identifies new data types and the operations to be

performed on them.

 Provides encapsulation, feature which, the data representation and the methods

implementation are hidden from external entities.

 Also provides inheritance properties in which an object inherits the properties of other

objects.

--
13.6. FEATURES OF OBJECT ORIENTED SYSTEM

Object Oriented Database (OODB) provides all the facilities associated with object

oriented paradigm. It enables us to create classes, organize objects, structure an inheritance

hierarchy and call methods of other classes. Besides these, it also provides the facilities

associated with standard database systems. However, object oriented database systems have not

yet replaced the RDBMS in commercial business applications.

https://database.guide/what-is-a-dbms/
https://database.guide/what-is-an-rdbms/
https://database.guide/what-is-a-table/
https://database.guide/what-is-a-row/
https://database.guide/what-is-a-column/
http://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms

165

In OODBMS, every entity is considered as object and represented in a table. Similar

objects are classified to classes and subclasses and relationship between two objects is

maintained using concept of inverse reference.

1. Complexity

OODBMS has the ability to represent the complex internal structure (of object) with

multilevel complexity.

2. Inheritance

Creating a new object from an existing object in such a way that new object inherits all

characteristics of an existing object.

3. Encapsulation

It is a data hiding concept in OOPL which binds the data and functions together which

can manipulate data and not visible to outside world.

4. Persistency

OODBMS allows creating persistent object (Object remains in memory even after

execution).

This feature can automatically solve the problem of recovery and concurrency.

--
13.7. ADVANTAGES OF OODBMS

 OODBMSs can provide appropriate solutions for many types of advanced database

applications.

Enriched modeling capabilities

The object-oriented data model allows the 'real world' to be modeled more closely. The

object, which encapsulates both state and behavior, is a more natural and realistic representation

of real-world objects. An object can store all the relationships it has with other objects, including

many-to-many relationships, and objects can be formed into complex objects that the traditional

data models cannot cope with easily.

Extensibility

OODBMSs allow new data types to be built from existing types. The ability to factor out

common properties of several classes and form them into a super class that can be shared with

subclasses can greatly reduce redundancy within system is regarded as one of the main

advantages of object orientation. Further, the reusability of classes promotes faster development

and easier maintenance of the database and its applications.

Capable of handling a large variety of data types

Unlike traditional databases (such as hierarchical, network or relational), the object

oriented database are capable of storing different types of data, for example, pictures, voice

video, including text, numbers and so on.

http://ecomputernotes.com/java/data-type-variable-and-array/explain-data-types-in-java

166

Removal of impedance mismatch

A single language interface between the Data Manipulation Language (DML) and the

programming language overcomes the impedance mismatch. This eliminates many of the

efficiencies that occur in mapping a declarative language such as SQL to an imperative 'language

such as 'C'. Most OODBMSs provide a DML that is computationally complete compared with

SQL, the 'standard language of RDBMSs.

More expressive query language

Navigational access from the object is the most common form of data access in an

OODBMS. This is in contrast to the associative access of SQL (that is, declarative statements

with selection based on one or more predicates). Navigational access is more suitable for

handling parts explosion, recursive queries, and so on.

Support for schema evolution

The tight coupling between data and applications in an OODBMS makes schema

evolution more feasible.

Support for long-duration, transactions

Current relational DBMSs enforce serializability on concurrent transactions to maintain

database consistency. OODBMSs use a different protocol to handle the types of long-duration

transaction that are common in many advanced database application.

Applicability to advanced database applications

There are many areas where traditional DBMSs have not been particularly successful,

such as, Computer-Aided Design (CAD), Computer-Aided Software Engineering (CASE),

Office Information System(OIS), and Multimedia Systems. The enriched modeling capabilities

of OODBMSs have made them suitable for these applications.

Improved performance

There have been a number of benchmarks that have suggested OODBMSs provide

significant performance improvements over relational DBMSs. The results showed an average

30-fold performance improvement for the OODBMS over the RDBMS.

--
13.8. DEFICIENCIES ADVANTAGES OF OODBMS

 Relational databases are widely used in many industries to store financial records, keep

track of inventory and to keep records on employees. In a relational database, information is

stored in tables (often called relations) which help organize and structure data. Even though they

are widely used, relational databases have some limitations.

 Cost
Setting up and maintaining an RDBMS can be an expensive undertaking, often

beyond the budget of a small business. To begin with, you need to purchase the software

http://ecomputernotes.com/computernetworkingnotes/computer-network/protocol

167

and, in many cases, hire a professional database administrator or programmer

experienced in Structured Query Language, or SQL, to set it up.

 Limitations in Structure
Many relational database systems impose limits on the lengths of data fields. If

you enter more information into a field than it can accommodate, the information will be

lost.

 Isolated Information
Because relational databases can use a large number of tables, there is always the

risk that some information may be lost or forgotten, particularly when it is being

transferred from one system to another. This is usually more of a problem for large

organizations, particularly when they are using different database systems.

 Abundance of Information

Advances in the complexity of information cause another drawback to relational

databases. Relational databases are made for organizing data by common characteristics.

Complex images, numbers, designs and multimedia products defy easy categorization

leading the way for a new type of database called object-relational database management

systems. These systems are designed to handle the more complex applications and have

the ability to be scalable.

--
13.9. DIFFERENCE BETWEEN RDBMS AND OODBMS

 An Object-Oriented Database Management System (OODBMS), sometimes referred as

Object Database Management System (ODMS) is a Database Management System (DBMS) that

supports modeling and creation of data as objects. OODBMS provides support for object classes,

class property and method inheritance by sub classes and their objects. A Relational Database

Management System (RDBMS) is also a DBMS but, that is based on the relational model. Most

popular DBMSs currently in use are RDBMSs.

168

--
13.10. ALTERNATIVE OBJECT ORIENTED DATABASE STRATEGIES

There are six different approaches to ODBMSs.

 Novel Database Data Model/Data Language Approach.

 Extend an Existing Database Language with O-O Capabilities.

 Extend an O-O Programming Language with Database Capabilities.

 Extendible ODBMS Client Libraries.

 Embed Object Database Language Constructs in a Host Language.

 Application-Specific with an Underlying ODBMS.

169

--
13.11. LET US SUM UP

 In this unit, you have learnt about the new database management system called object

oriented database management system (OODBMS). This lesson describes the OODBMS

concepts, features, advantages and disadvantages. The comparison between the RDBMS and

OODBMS is also highlighted in this unit. Thus, the object oriented DBMS unit would have

brought you to closer to know the concept of next generation database management system

concept.

--
13.12. UNIT – END QUESTIONS

1. Elaborate the concept of next generation database management system.

2. Discuss about the OODBMS advantages and its features.

--
13.13. ANSWER TO CHECK YOUR PROGRESS

1. Future database languages will be general purpose programming languages, transparently

supported by traditional database amenities such as persistence and concurrency control. The

next generation of such languages will have an open architecture which will simplify the

addition of new languages. Hence, there will be a host of compatible database programming

languages. The next generation of database programming languages can be classified along

two axes. The first axis is for the data representation paradigm with relational at one extreme

and OO at the other.

Both hypothesized directions are desirable and probable The primary challenge is integration

which may be addressed with the OO approach. Next generation DBMSs (e.g., multimedia

databases) call for the integration of all approaches to databases. Different approaches to

databases are appropriate for different problems. Some requirements of a multimedia

electronic library include: multiple data types on various media; complex data structures;

integration of multiple databases; integration of database and programming languages; access

to remote data; deduction capabilities; and temporal and spatial semantics and data.

OODBMSs are being used to address the first four challenges.

170

2. Object oriented database systems are alternative to relational database and other database

systems. In object oriented database, information is represented in the form of objects.

Object oriented databases are exactly same as object oriented programming languages. If we

can combine the features of relational model (transaction, concurrency, recovery) to object

oriented databases, the resultant model is called as object oriented database model.

 Complexity

 OODBMS has the ability to represent the complex internal structure (of object)

with multilevel complexity.

 Inheritance

 Creating a new object from an existing object in such a way that new object

inherits all characteristics of an existing object.

 Encapsulation

 It is a data hiding concept in OOPL which binds the data and functions together

which can manipulate data and not visible to outside world.

 Persistency

 OODBMS allows creating persistent object (Object remains in memory even after

execution).

171

--
UNIT XIV – OBJECT RELATIONAL MAPPING

Structure

UNIT XIV – OBJECT RELATIONAL MAPPING
14.1. Introduction

14.2. Objective

14.3. Significance of Mapping

14.4. Mapping Basics

14.4.1. Mapping a Class Inheritance tree

14.4.2. Mapping Object relationships

14.4.3. Types of Relationships

14.3.5. Implementation of Object Relationships

14.3.6. Implementation of relational database relationships

14.3.7. Relationship Mappings

14.3.8. Mapping Ordered Collections

14.3.9. Mapping recursive relationships

14.3.10. Modeling with join tables

14.3.11. Open Source Object

14.3.12. Relational Mapping Software

14.4. Let Us Sum Up

14.5. Unit – End Exercises

14.6. Answer to Check Your Progress

--
14.1. INTRODUCTION

In this lesson you will be know about the concept of object relational mapping and its

significance. The mapping process represents mapping functions and relationships This lesson

will make you to understand about object relations and represent the type of relationship between

the objects.

172

--
14.2. OBJECTIVES

After going through this lesson you will be in a position to

 Explain significance of mapping.

 Define mapping and its basic functions.

--
14.3. SIGNIFICANCE OF MAPPING

 When we work with an object-oriented system, there is a mismatch between the object

model and the relational database. RDBMSs represent data in a tabular format whereas object-

oriented languages, such as Java or C# represent it as an interconnected graph of objects.

ORM stands for Object-Relational Mapping (ORM) is a programming technique for

converting data between relational databases and object oriented programming languages such as

Java, C#, etc.

 An API to perform basic CRUD operations on objects of persistent classes.

 A language or API to specify queries that refers to classes and properties of classes.

 A configurable facility for specifying mapping metadata.

 A technique to interact with transactional objects to perform dirty checking, lazy

association fetching, and other optimization functions.

The importance of data mappings are,

Data Integration
For successful data integration, the source and target data repositories must have the same

data model. However, it is rare for any two data repositories to have the same schema. Data

mapping tools help bridge the differences in the schemas of data source and destination, allowing

businesses to consolidate information from different data points easily.

Data Migration

Data migration is the process of moving data from one database to another. While there

are various steps involved in the process, creating mappings between source and target is one of

the most difficult and time-consuming tasks, particularly when done manually. Inaccurate and

invalid mappings at this stage not only impact the accuracy and completeness of data being

migrated but can even lead to the failure of the data migration project

Data Warehousing

Data mapping in a data warehouse is the process of creating a connection between the

source and target tables or attributes. Using data mapping, businesses can build a logical data

https://www.astera.com/products/centerprise-data/
https://www.astera.com/products/centerprise-data/
https://www.astera.com/by-use-case/data-migration/
https://www.astera.com/solutions/technology-solutions/data-warehousing/

173

model and define how data will be structured and stored in the data warehouse. The process

begins with collecting all the required information and understanding the source data.

Data Transformation

Because enterprise data resides in a variety of locations and formats, data

transformation is essential to break information silos and draw insights. Data mapping is the first

step in data transformation. It is done to create a framework of what changes will be made to

data before it is loaded to the target database.

--
14.4. MAPPING BASICS

 ORM resolves the object code and relational database mismatch with three approaches:

bottom up, top-down and meet in the middle. Each approach has its share of benefits and

drawbacks. When selecting the best software solution, developers must fully understand the

environment and design requirements.

In addition to the data access technique, ORM's benefits also include:

 Simplified development because it automates object-to-table and table-to-object

conversion, resulting in lower development and maintenance costs.

 Less code compared to embedded SQL and handwritten stored procedures.

 Transparent object caching in the application tier, improving system performance.

 An optimized solution making an application faster and easier to maintain.

ORM’s emergence in multiple application development has created disagreement among

experts. Key concerns are that ORM does not perform well and that stored procedures might be a

better solution. In addition, ORM dependence may result in poorly-designed databases in certain

circumstances.

14.4.1. Mapping a Class Inheritance tree

Object oriented applications usually have inheritance as an important part of their design,

including in their domain objects. However, the corresponding data model has no built-in

mechanism for specifying inheritance.

Domain objects in an application represent the core data that is used by the application

and therefore these objects are usually persisted in some data source. If the data source is a

relational DBMS, then domain objects have to be mapped to a relational model which looks

different from an object model. Therefore, there are many things that you must keep in mind

when mapping these domain objects to a relational database.

Inheritance represents an "IS-A" relationship between two classes where the derived class

inherits all the characteristics of the base class. Incidentally, there is no direct inheritance

https://www.astera.com/data-transformation/
https://www.astera.com/data-transformation/

174

relationship defined in the relational model. Therefore, when you map inheritance from your

object model to your data model, you have two different ways in which you can map inheritance

to a relational database. They are;

Vertical Inheritance Mapping: - In this approach each class in the inheritance hierarchy maps

to its own table in the database and all the tables in the database have a one-to-one relationship

with each other

Single-table inheritance mapping: - In this approach, all classes in the inheritance hierarchy

map to the same single table in the database and this table contains columns for all the classes. It

also contains a type column to indicate the type for each row.

Figure 19: -UML diagram for class hierarchy

Vertical Inheritance Mapping

The simplest and most flexible inheritance mapping is where each class in the inheritance

hierarchy (base or derived) is mapped to its own table in the database. And, each derived class

table in the database has a one-to-one relationship with the base class table along with an

existence dependency (meaning the derived class table cannot have a row unless there is a

corresponding row in the base class table). The main benefit of this mapping is that it is very

flexible and allows you to keep adding more derived classes without impacting any of the

existing code in your application and also any existing tables in the database that are most likely

holding a lot of valuable data.

14.4.2. Mapping Object relationships

ORM stands for Object relational Mapping. ORM is an attempt to map the notion of

object and relational world so that they can talk to each other in a easy way. Any non trivial

application has a database behind it and Java applications are no exception. In fact if we look

closely into any application, one will realize that the application gets more or less modeled

around the data model. In database technology, relational database are the clear winners. Other

database technologies has come and gone. Relational concept of data management was first

introduced by E.F. Codd in 1970.

175

An analogy for relational model can be drawn with spreadsheets. Each sheet represents a

table and the columns in the sheet represent the table attributes. Each instance of data is

represented by the rows. The data in different sheets are connected with each other by referring

to the data point using the sheet number, column number and row number. This is what is called

as foreign key relationship in database technology. In fact most of the GUI interfaces to database

show the data in a spreadsheet format.

In object-relational mapping products, the ability to directly manipulate data stored in a

relational database using an object programming language is called transparent persistence. This

is in contrast to a database sub-language used by embedded SQL or a call interface used by

ODBC or JDBC.

Using an object-relational mapping product means you will have less code to write and,

depending on how you use your data, you might have higher performance over an embedded

SQL or a call interface.

With transparent persistence, the manipulation and traversal of persistent objects is

performed directly by the object programming language in the same manner as in-memory, non-

persistent objects. This is achieved through the use of intelligent caching as this animation

shows.

Figure 20: - Layered Approach

A common way of accessing object data is by navigation, also known as "traversal." The

term is derived from the access patterns for the data structures that are common with object

models. Many times these structures are "trees" or "graphs." If you would draw one of these data

structures, it might look something like the diagram shown below. Moving from one node in this

176

graph to another node is navigating or traversing the data structure. This navigation is built into

object programming languages such as Java or C++.

Object-relational mapping products should be used when you want to take advantage of

transparent persistence and use a relational database. A relational database may be required

because:

 The data already resides in one or more relational databases.

 The data is new, but there are technical or political reasons for using a relational

database.

In either case, an object-relational mapping product will reduce your programming code and,

through caching, improve performance over using an embedded SQL or call-level interface with

a relational database manager.

14.4.3. Types of Relationships

The object-oriented domain model consists of business entities and relationships between

entities. Relationships among entities may be one-to-one, one-to-many, many-to-one, or many-

to-many. In addition, the relationships have a direction: the relationships can be unidirectional or

bidirectional.

Relationships must have an owning side. A unidirectional relationship has only an

owning side. A bidirectional relationship has both an owning side and an inverse (non-owning)

side. The owning side of a relationship determines the updates to the relationship in the database.

If there is an association between two entities, one of the following relationship modeling

annotations must be applied to the corresponding persistent property or field of the referencing

entity: OneToOne, OneToMany, ManyToOne, ManyToMany.

 One-to-one relationship: - An one-to-one relationship can be unidirectional or

bidirectional.

 One-to-many/many-to-one relationships: - Also one-to-many relationships can be

bidirectional or one directional.

 Many-to-many relationship: -

Assuming that: Entity A references a collection of Entity B. Entity B references a

collection of Entity A. Entity A is the owner of the relationship.

14.4.4. Implementation of Object Relationships

Object-relational mapping (ORM, O/RM, and O/R mapping) in computer science is a

programming technique for converting data between incompatible type systems in object-

oriented programming languages. This creates, in effect, a "virtual object database" that can be

used from within the programming language. There are both free and commercial packages

available that perform object-relational mapping, although some programmers opt to create their

own ORM tools.

177

In object-oriented programming, data management tasks act on object-oriented (OO)

objects that are almost always non-scalar values. For example, consider an address book entry

that represents a single person along with zero or more phone numbers and zero or more

addresses. This could be modeled in an object-oriented implementation by a "Person object" with

attributes/fields to hold each data item that the entry comprises: the person's name, a list of phone

numbers, and a list of addresses. The list of phone numbers would itself contain "PhoneNumber

objects" and so on. The address book entry is treated as a single object by the programming

language (it can be referenced by a single variable containing a pointer to the object, for

instance). Various methods can be associated with the object, such as a method to return the

preferred phone number, the home address, and so on.

However, many popular database products such as structured query language database

management systems (SQL DBMS) can only store and manipulate scalar values such as integers

and strings organized within tables. The programmer must either convert the object values into

groups of simpler values for storage in the database (or convert them back upon retrieval), or

only use simple scalar values within the program. Object-relational mapping is used to

implement the first approach.

The heart of the problem is translating the logical representation of the objects into an

atomized form that is capable of being stored in the database, while preserving the properties of

the objects and their relationships so that they can be reloaded as objects when needed. If this

storage and retrieval functionality is implemented, the objects are said to be persistent

In other words:

 The object model favours hierarchical / graph data structures where parent

entities contain child entities

 The relational model favours “relationships” where child entity sets reference parent

entity sets.

Note the emphasis on “favours”, because if you look beyond these subtle modelling differences

(and squint really hard), both models are really the same thing. However, in reality, they’re not,

which is why ORMs help you invert those arrows.

14.4.5. Implementation of relational database relationships

A relationship, in the context of databases, is a situation that exists between two relational

database tables when one table has a foreign key that references the primary key of the other

table. Relationships allow relational databases to split and store data in different tables, while

linking disparate data items.

A relationship describes association among entities. For example, a relationship exists

between customers and an agent, in that an agent can serve many customers and each customer

may be served by only one agent.

https://en.wikipedia.org/wiki/Persistence_(computer_science)

178

Data Models use three types of relationships: one‐to‐many, many‐to‐many, and

one‐to‐one. Database designers usually use these notations: 1: M or 1..*, M:N or “..” or 1:1 or

1..1 respectively.

 One‐to‐many (1:M or 1..*) relationship: A painter creates many different paintings, but

each painting is only made by one painter. Thus the painter is the “one” is related to the

paintings (the “many”). Therefore “PAINTER paints PAINTINGS” is represented as

1:M.

 Many‐to‐many (M:N or “..”) relationship: An employee may learn many job skills and

each job skill may be learned by many employees. Thus, “EMPLOYEE learns SKILL” as

M:N.

 One‐to‐one (1:1 or 1..1) relationship: A retail company’s management structure may

require that each store be managed by a single employee. In turn, each manager can only

manage a single store. Therefore, the relationship “ EMPLOYEE manages STORE” is

labeled 1:1

 The 1:M relationship is the relational modeling ideal. Therefore, this relationship type

should be the norm in any relationship database design.

 The 1:1 relationship should be rare in any relational database design.

 M:N relationships cannot be implemented as such in the relational model, they have to be

changed into two 1:M relationships.

1. The 1:M Relationship: The 1:M relationship is the norm for relational databases. For

example, one painter usually has many paintings. Each painting was painted by only one

painter, but a painter could have many paintings.

2. The 1:1 Relationship: One entity in a 1:1 relationship can only be related to one other entity

and vice versa. For example, every department has only one Chair and each chair can only

head one department. 1:1 relationships should be rare.

3. The M:N Relationship A many to many (M:N) relationship is not supported directly in the

relational environment. They are usually implemented by creating a new entity in 1:M

relationships with the original entities. Example: Each CLASS is taken by many students,

and each STUDENT can take many CLASSes. There may be many rows in the CLASS table

for any given row in the STUDENT table. Additionally, there can be many rows in the

STUDENT table for any given row in the CLASS table.

4. M:N relations create a lot of redundancy , in that the same tuple occurs many times in a given

table, so tuples and their attributes are repeated many times, occupying space and leading to

errors and efficiency problems.

14.4.6. Relationship Mappings

179

Persistent objects use relationship mappings to store references to instances of other

persistent classes. The appropriate mapping class is chosen primarily by the cardinality of the

relationship.

Object relationships can be either private or independent.

 In a private relationship the target object is a private component of the source object. The

target object cannot exist without the source and is accessible only via the source object.

Destroying the source object will also destroy the target object.

 In an independent relationship the source and target are public objects that exist

independently. Destroying one object does not necessarily imply the destruction of the

other.

Aggregate object mappings are private by default, since the target object shares the same

row as the source object. One-to-one, one-to-many, and many-to-many mappings can be

independent or private, depending upon the application. Normally, many-to-many mappings are

independent by definition; however, because a many-to-many mapping can be used to implement

a logical one-to-many without requiring a back reference in the target to the source, allows

many-to-many mappings to be private as well as independent.

14.4.7. Mapping Ordered Collections

The mapping element used for mapping a collection depends upon the type of interface.

Collections instances have the usual behavior of value types.

An object of value type has no database identity; it belongs to an entity instance, and its

persistent state is embedded in the table row of the owning entity—at least, if an entity has a

reference to a single instance of a value type. If an entity class has a collection of value types (or

a collection of references to value-typed instances), you need an additional table, the so-called

collection table.

They are automatically persisted when referenced by a persistent object and are

automatically deleted when unreferenced. If a collection is passed from one persistent object to

another, its elements might be moved from one table to another. Two entities cannot share a

reference to the same collection instance. Due to the underlying relational model, collection-

valued properties do not support null value semantics. It does not distinguish between a null

collection reference and an empty collection.

14.4.8. Mapping recursive relationships

 A relationship has always been between occurrences in two different entities. However, it

is possible for the same entity to participate in the relationship. This is termed a recursive

relationship. After a many-to-many relationship, one of the more difficult relationships to

express in SQL is a recursive relationship. This is a nonidentifying, nonmandatory relationship in

which the same entity is both the parent and the child.

180

For 1:N recursive relationships, reinclude the primary key of the table with the recursive

relationship in the same table, giving the key some other name.

Figure 21: - 1:N Recursive Relationship

For M:N recursive relationships, create a separate table for the relationship

Figure 22: - M:N Recursive Relationship

181

14.4.9. Modeling with join tables

 A join in the model indicates a relationship between one fact table and one dimension

table. When you use the Add to Model wizard to model data, the wizard creates joins

automatically between a fact table and each of its corresponding dimension tables.

Sometimes model logically contains information that is stored in various places in the

database. Your database may want to split up logical information into tables for various reasons,

such as to avoid repetition or to better optimize indexes.

When you model fact and dimension tables individually, joins are automatically created

between them if the join references exist in the source tables.

You can also manually create joins in the data model. To do this, you drag and drop a

dimension table to a fact table, or click Create Joinin the Joins area.

When you define a join between a fact table and dimension table, you select a join

column from each table. You can create a join on more than one column.

Define joins between fact tables and dimension tables to enable querying of related data. For

example, you can define a join between the Profit Metrics fact table and the Products dimension

table.

1. In Data Modeler, lock the model for editing.

2. In the Dimensions Tables area, drag and drop a dimension table to the Fact Tables area.

Or, in the Joins area, click Create Join.

3. In the Joins area, specify the appropriate Fact Table, Fact Column, Dimension Table, and

Dimension Column to use for the join.

For example, you might specify a billing date column and a calendar date column.

4. Click the checkmark icon to save the changes to the join.

If you want to remove your changes, then click the X icon. If you start to create a new

join and click X, then the new row for the join is removed from the Joins table.

14.4.10. Open Source Object

PostGreSQL is an open-source object relational DBMS It is perhaps the most feature-rich

robust open-source database around and perhaps the most feature rich even among non-open

source databases.

PostGreSQL in addition to being a relational database, is object-relational as well. What this

means is that it has some object-oriented features such as concept of inheritance and ability to

define complex datatypes with special functions to deal with these datatypes, but is for the most

part relational in nature. In fact, most uses of Postgres do not take advantage of it's extensive

object-oriented functionality. It has features that you may not find in even expensive well-known

commercial relational database management systems (RDBMS) and ORDBMS systems. Below

are a couple of neat features that make it stand out from the pack.

182

1. Pretty much full ANSI-SQL 92 compliance and a lot of ANSI 99 compliance as well and

extensive support for transactions, BEFORE and AFTER triggers, stored procs,

constraints, foreign keys, referential integretity, cascade update/delete.

2. Support for numerous languages in creation of user-defined database functions (e.g you

can use native SQL, PgSQL (postgres counterpart to Oracle PL/SQL or MS SQL

Server's/Sybase TransactSQL), Java, C, C++, TCL, Python, and Perl bindings and to

define new PL languages to incorporate into PostgresSQL.

3. Inheritance of table structures - this is probably a feature that is rarely used, but the

feature comes in handy in certain situations. We'll provide an example use for such a rare

feature.

4. Built-in complex data types such as IP Address, Geometries (Points, lines, circles), arrays

as a database field type and ability to define your own custom datatypes with properties,

operators and functions that work with them.

5. Ability to define Aggregate functions - these are functions that work on a set of records

rather than a single record.

6. Concept of collections and sequences.

7. Support for multiple OSes. Some popular ones (Linux, Windows, Unix, Mac)

8. It makes a great Web database because it is fast and feature rich.

9. It has freely available ODBC drivers and Level 4 JDBC drivers.

14.4.11. Relational Mapping Software

 This is a list of well-known object-relational mapping software. It is not up-to-date or all-

inclusive.

 Flex.

 Java.

 iOS.

 NET.

 Object Pascal (Delphi).

 Objective-C, Cocoa.

 Perl.

 PHP.

 Python.

 Ruby.

 Smalltalk.

https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software#Flex
https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software#Java
https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software#iOS
https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software#.NET
https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software#Object_Pascal_(Delphi)
https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software#Objective-C,_Cocoa
https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software#Perl
https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software#PHP
https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software#Python
https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software#Ruby
https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software#Smalltalk

183

--
14.5. LET US SUM UP

 In this unit, you have learnt about the object relational mapping concepts and significance

of mapping.

--
14.6. UNIT – END QUESTIONS

1. Explain about the basic concepts of mapping.

2. Identify the significance of Mapping.

--
14.7. ANSWER TO CHECK YOUR PROGRESS

1. ORM resolves the object code and relational database mismatch with three approaches:

bottom up, top-down and meet in the middle. Each approach has its share of benefits and

drawbacks. When selecting the best software solution, developers must fully understand the

environment and design requirements.

In addition to the data access technique, ORM's benefits also include:

 Simplified development because it automates object-to-table and table-to-object

conversion, resulting in lower development and maintenance costs.

 Less code compared to embedded SQL and handwritten stored procedures.

 Transparent object caching in the application tier, improving system performance.

 An optimized solution making an application faster and easier to maintain.

ORM’s emergence in multiple application development has created disagreement among

experts. Key concerns are that ORM does not perform well and that stored procedures might

be a better solution. In addition, ORM dependence may result in poorly-designed databases

in certain circumstances..

2. The importance of data mappings are,

Data Integration
 For successful data integration, the source and target data repositories must have the same

data model. However, it is rare for any two data repositories to have the same schema. Data

https://www.astera.com/products/centerprise-data/

184

mapping tools help bridge the differences in the schemas of data source and destination,

allowing businesses to consolidate information from different data points easily.

Data Migration

 Data migration is the process of moving data from one database to another. Inaccurate

and invalid mappings at this stage not only impact the accuracy and completeness of data

being migrated but can even lead to the failure of the data migration project

Data Warehousing

 Data mapping in a data warehouse is the process of creating a connection between the

source and target tables or attributes.

Data Transformation

 Because enterprise data resides in a variety of locations and formats, data

transformation is essential to break information silos and draw insights.

https://www.astera.com/by-use-case/data-migration/
https://www.astera.com/solutions/technology-solutions/data-warehousing/
https://www.astera.com/data-transformation/
https://www.astera.com/data-transformation/

