CONTENTS

BLOCK I: - FUNDAMENTALS OF DBMS & FILE ORGANISATION

UNIT | - DATABASE MANAGEMENT SYSTEM CONCEPTS 1-11
1.1. Introduction
1.2. Objective
1.3. Database Management System Concepts
1.3.1. Significance of Database
1.3.2. Database System Applications
1.3.3. Data Independence
1.3.4. Data Modeling for a Database
1.4. Entities and their Attributes
1.4.1. Entities
1.4.2. Attributes
1.4.3. Relationships and Relationships Types
1.5. Advantages and Disadvantages of Database Management System
1.6. DBMS Vs RDBMS
1.7. Let Us Sum Up
1.8. Unit — End Exercises
1.9. Answer to Check Your Progress

UNIT Il - DATABASE SYSTEM ARCHITECTURE 12 - 36
2.1. Introduction
2.2. Objective
2.3. Three Level Architecture of DBMS
2.3.1. The External Level or Subschema
2.3.2. The Conceptual Level or Conceptual Schema
2.3.3. The Internal Level or Physical Schema
2.4. Mapping
2.5. MySQL Architecture
2.6. SQL Server 2000 Architecture
2.7. Oracle Architecture
2.8. Database Management System Facilities
2.9. Data Definition Language

2.10. Data Manipulation Language

2.11. Database Management System Structure
2.12. Database Manager

2.13. Database Administrator

2.14. Data Dictionary

2.15. Distributed Processing

2.16. Information and Communication Technology System (ICT)
2.17. Client / Server Architecture

2.18. Let Us Sum Up

2.19. Unit — End Exercises

2.20. Answer to Check Your Progress

UNIT 111 - DATABASE MODELS AND IMPLEMENTATION
3.1. Introduction
3.2. Objective
3.3. Data Model and Types of Data
3.3.1. Relational Data Model
3.3.2. Hierarchical Model
3.3.3. Network Data Model
3.3.4. Object / Relational Model
3.3.5. Object-Oriented Model
3.3.6. Entity-Relationship Model
3.3.6.1. Modeling using E-R Diagrams
3.3.6.2. Notation used in E-R Model
3.3.7. Relationships and relationship Types
3.3.8. Associative database Model
3.4. Let Us Sum Up
3.5. Unit — End Exercises
3.6. Answer to Check Your Progress

UNIT IV — FILE ORGANIZATION FOR CONVENTIONAL DBMS
4.1. Introduction
4.2. Objective
4.3. Storage Devices and its Characteristics
4.3.1. Magnetic Disks
4.3.2. Physical Characteristics of Disks
4.3.3. Performance Measures of Disks
4.3.4. Optimization of Disk-Block Access

37 -50

51-63

4.4. File Organization
4.4.1. Fixed-Length Records
4.4.2. Variable-Length Records
4.4.3. Organization of records in files
4.4.4. Sequential file Organization
4.4.5. Indexed Sequential Access Method (ISAM)
4.4.6. Virtual Storage Access Method (VSAM)
4.5, Let Us Sum Up
4.6. Unit — End Exercises
4.7. Answer to Check Your Progress

BLOCK I1I: - BASICS OF SQL & RELATION ALGEBRA

UNIT V - RDBMS

5.1. Introduction

5.2. Objective

5.3. An informal look at the relational model
5.3.1. Relational Database Management System
5.3.2. RDBMS Properties
5.3.3. The Entity-Relationship Model

5.4. Overview of Relational Query Optimization
5.4.1. System Catalog in a Relational DBMS
5.4.2. Information stored in the System Catalog
5.4.3. How Catalogs are Stored

5.5. Let Us Sum Up

5.6. Unit — End Exercises

5.7. Answer to Check Your Progress

UNIT VI -SQL -1
6.1. Introduction
6.2. Objective
6.3. Categories of SQL Commands
6.3.1. Data Definition
6.3.2. Data Manipulation Statements
6.3.3. SELECT
6.3.4. The Basic Form
6.3.5. Sub Queries
6.4. Functions

64 - 72

73 -85

6.5. GROUP BY Feature

6.6. Updating the Database

6.7. Data Definition Facilities

6.8. Let Us Sum Up

6.9. Unit — End Exercises

6.10. Answer to Check Your Progress

UNIT VII -SQL - 11

7.1. Introduction

7.2. Objective

7.3. Views

7.4. Embedded SQL*

7.5. Declaring Variables and Exceptions
7.6. Embedding SQL Statements

7.7. Transaction Processing

7.8. Consistency and Isolation

7.9. Atomicity and Durability

7.10. Let Us Sum Up

7.11. Unit — End Exercises

7.12. Answer to Check Your Progress

UNIT VIII - RELATIONAL ALGEBRA
8.1. Introduction
8.2. Objective
8.3. Basic Operations
8.3.1. Union (U)
8.3.2. Difference (-)
8.3.3. Intersection
8.3.4. Cartesian product (x)
8.4. Additional Relational Algebra Operations
8.4.1. Projection
8.4.2. Selection
8.4.3. JOIN
8.4.4. Division
8.5. Let Us Sum Up
8.6. Unit — End Exercises
8.7. Answer to Check Your Progress

86 - 97

98 - 109

BLOCK I11: - NORMALIZATION CONCEPTS & QUERY PROCESSING

UNIT IX - RELATIONAL CALCULUS 110 - 116
9.1. Introduction
9.2. Objective
9.3. Tuple Relational Calculus
9.3.1. Semantics of TRC Queries
9.3.2. Examples of TRC Queries
9.6. Domain Relational Calculus
9.7. Relational ALGEBRA Vs Relational CALCULUS
9.8. Let Us Sum Up
9.9. Unit — End Exercises
9.10. Answer to Check Your Progress

UNIT X - NORMALIZATION 117 - 129
10.1. Introduction

10.2. Objective

10.3. Functional Dependency

10.4. Anomalies in a database

10.5. Properties of Normalized Relations
10.6. First Normalization

10.7. Second Normal Form Relation
10.8. Third Normal Form

10.9. Boyce-Codd Normal Form (BCNF)
10.10. Fourth and Fifth Normal Form
10.11. Let Us Sum Up

10.12. Unit — End Exercises

10.13. Answer to Check Your Progress

UNIT XI - QUERY PROCESSING AND OPTIMIZATION 130 - 150
11.1. Introduction

11.2. Objective

11.3. Query Interpretation

11.4. Equivalence of expressions

11.5. Algorithm for Executing Query Operations

11.6. External Sorting

11.7. Select Operation

11.8. Join Operation
11.9. PROJECT and set Operation
11.10. Aggregate Operations
11.11. Outer Join
11.12. Heuristics in Query Optimization
11.13. Semantic Query Optimization
11.14. Converting Query Tree to Query Evaluation Plan
11.15. Cost Estimates in Query Optimization
11.15.1. Measure of Query Cost
11.15.2. Catalog information for cost estimation of queries
11.16. Join Strategies for Parallel Processing
11.17. Parallel Join
11.18. Pipelined multi way join
11.19. Physical organization
11.20. Let Us Sum Up
11.21. Unit — End Exercises
11.22. Answer to Check Your Progress

UNIT XII - DISTRIBUTED DATABASE & MAPPING CARDNALITIES 151 - 160

12.1. Introduction

12.2. Objective

12.3. Distributed databases
12.3.1. Structure of Distributed Database
12.3.2. Trade-offs in Distributing the Database
12.3.3. Advantages of Data Distribution
12.3.4. Disadvantages of Data Distribution
12.3.5. Design of Distributed databases

12.4. Data Replication

12.5. Data Fragmentation

12.6. Let Us Sum Up

12.7. Unit — End Exercises

12.8. Answer to Check Your Progress

UNIT X111 - OBJECT ORIENTED DBMS 161 - 170
13.1. Introduction

13.2. Objective

13.3. Next Generation Database System

13.4. New Database Application

13.5. Object Oriented Database Management System

13.6. Features of Object Oriented System

13.7. Advantages of Object Oriented Database Management System
13.8. Deficiencies of Relational Database Management System
13.9. Difference between RDBMS and OODBMS

13.10. Alternative Object Oriented Database Strategies

13.11. Let Us Sum Up

13.12. Unit — End Exercises

13.13. Answer to Check Your Progress

UNIT XIV - OBJECT RELATIONAL MAPPING 171-184
14.1. Introduction
14.2. Objective
14.3. Significance of Mapping
14.4. Mapping Basics
14.4.1. Mapping a Class Inheritance tree
14.4.2. Mapping Object relationships
14.4.3. Types of Relationships
14.4.5. Implementation of Object Relationships
14.4.6. Implementation of relational database relationships
14.4.7. Relationship Mappings
14.4.8. Mapping Ordered Collections
14.4.9. Mapping recursive relationships
14.4.10. Modeling with join tables
14.4.11. Open Source Object
14.4.12. Relational Mapping Software
14.4. Let Us Sum Up
14.5. Unit — End Exercises
14.6. Answer to Check Your Progress

UNIT | - DATABASE MANAGEMENT SYSTEM CONCEPTS

Structure

UNIT | - DATABASE MANAGEMENT SYSTEM CONCEPTS
1.1. Introduction
1.2. Objective
1.3. Database Management System Concepts
1.3.1. Significance of Database
1.3.2. Database System Applications
1.3.3. Data Independence
1.3.4. Data Modeling for a Database
1.4. Entities and their Attributes
1.4.1. Entities
1.4.2. Attributes
1.4.3. Relationships and Relationships Types
1.5. Advantages and Disadvantages of Database Management System
1.6. DBMS Vs RDBMS
1.7. Let Us Sum Up
1.8. Unit — End Exercises
1.9. Answer to Check Your Progress

1.1. INTRODUCTION

As an end in itself, understanding database management system concepts and terms is
important to enable you learn more about DBMS and attributes of DBMS after the course is
over. Without understanding these concepts and terms, you will have difficulty discussing
database management system ideas with others, and will have difficulty in reading the technical
literature. Since computer science is rapidly evolving new database management system and
since the issues are important in many areas of computer science the ability to learn more quickly
is important to maintaining your technical edge.

1.2. OBJECTIVES

After going through this lesson you would be in a positions to
> Use ideas from the various paradigms of database that is not explicitly suited to that
paradigm.
> Implement important run-time database management system and its applications, entities
and its attributes, advantages and disadvantages and compare the DBMS and RDBMS
that use such implementations.

1.3. DATABASE MANAGEMENT SYSTEM CONCEPTS

Data is nothing but facts and statistics stored or free flowing over a network, generally it's
raw and unprocessed. For example: When you visit any website, they might store you IP address,
that is data, in return they might add a cookie in your browser, marking you that you visited the
website, that is data, your name, it's data, your age, it's data.

A Database is a collection of related data organised in a way that data can be easily
accessed, managed and updated. Database can be software based or hardware based, with one
sole purpose, storing data. During early computer days, data was collected and stored on tapes,
which were mostly write-only, which means once data is stored on it, it can never be read again.
They were slow and bulky, and soon computer scientists realized that they needed a better
solution to this problem.

A DBMS is software that allows creation, definition and manipulation of database,
allowing users to store, process and analyse data easily. DBMS provides us with an interface or a
tool, to perform various operations like creating database, storing data in it, updating data,
creating tables in the database and a lot more.

DBMS also provides protection and security to the databases. It also maintains data
consistency in case of multiple users. It consists of a group of programs which manipulate the
database and provide an interface between the databases. It includes the user of the database and
other application programs.

The DBMS accepts the request for data from an application and instructs the operating
system to provide the specific data. In large systems, a DBMS helps users and other third-party
software to store and retrieve data.

1.3.1. Significance of Database
One of the major aims of a database is to supply users with an abstract view of data,
hiding a certain element of how data is stored and manipulated. So, the starting point for the

design of a database must be an abstract and general description of the information requirements
of the organization that is to be represented in the database. And hence you will require an
environment to store data and make it work as a database.

A database management system is important because it manages data efficiently and
allows users to perform multiple tasks with ease. A database management system stores,
organizes and manages a large amount of information within a single software application. Use
of this system increases efficiency of business operations and reduces overall costs.

Database management systems are important to businesses and organizations because
they provide a highly efficient method for handling multiple types of data. Some of the data that
are easily managed with this type of system include: employee records, student information,
payroll, accounting, project management, inventory and library books. These systems are built to
be extremely versatile.

Without database management, tasks have to be done manually and take more time. Data
can be categorized and structured to suit the needs of the company or organization. Data is
entered into the system and accessed on a routine basis by assigned users. Each user may have an
assigned password to gain access to their part of the system. Multiple users can use the system at
the same time in different ways.

A simple database has a single table with rows for the data and columns that define the
data elements. For an address book, the table columns define data elements such as name,
address, city, state and phone number, while a table row, or record, contains data for each person
in the book. The query language provides a way to find specific types of data in each record and
return results that match the criteria. These results display in a form that uses the defined data
elements but only shows records that meet the criteria. These three components make up almost
every type of database.

Relational databases use multiple tables and define relationships between them using a
schema in addition to data elements. Records and data elements from each table merge, based on
the query, and display in the form. Routinely used queries often become reports. A report uses
the same query but reports on changes in data over time.

1.3.2. Database System Applications
Applications where we use Database Management Systems are:
> Telecom: There is a database to keeps track of the information regarding calls made,
network usage, customer details etc. Without the database systems it is hard to maintain
that huge amount of data that keeps updating every millisecond.
> Industry: Where it is a manufacturing unit, warehouse or distribution centre, each one
needs a database to keep the records of ins and outs. For example distribution centre
should keep a track of the product units that supplied into the centre as well as the
products that got delivered out from the distribution centre on each day; this is where
DBMS comes into picture.

> Banking System: For storing customer info, tracking day to day credit and debit
transactions, generating bank statements etc. All this work has been done with the help of
Database management systems.

> Sales: To store customer information, production information and invoice details.

> Airlines: To travel though airlines, we make early reservations, this reservation
information along with flight schedule is stored in database.

> Education sector: Database systems are frequently used in schools and colleges to store
and retrieve the data regarding student details, staff details, course details, exam details,
payroll data, attendance details, fees details etc. There is a hell lot amount of inter-related
data that needs to be stored and retrieved in an efficient manner.

> Online shopping: You must be aware of the online shopping websites such as Amazon,
Flipkart etc. These sites store the product information, your addresses and preferences,
credit details and provide you the relevant list of products based on your query. All this
involves a Database management system.

These are a very few applications, this list is never going to end if we start mentioning all the

DBMS applications.

1.3.3. Data Independence

If a database system is not multi-layered, then it becomes difficult to make any changes
in the database system. Database systems are designed in multi-layers as we learnt earlier.

A database system normally contains a lot of data in addition to users’ data. For example,
it stores data about data, known as metadata, to locate and retrieve data easily. It is rather
difficult to modify or update a set of metadata once it is stored in the database. But as a DBMS
expands, it needs to change over time to satisfy the requirements of the users. If the entire data is
dependent, it would become a tedious and highly complex job.

Logical Data Independence

Logical Schema

Physical Schema

Physical Data Independence

Figure 1: - Data Independence

Metadata itself follows a layered architecture, so that when we change data at one layer,
it does not affect the data at another level. This data is independent but mapped to each other.

Logical Data Independence

Logical data is data about database, that is, it stores information about how data is
managed inside. For example, a table (relation) stored in the database and all its constraints,
applied on that relation.
Logical data independence is a kind of mechanism, which liberalizes itself from actual data
stored on the disk. If we do some changes on table format, it should not change the data residing
on the disk.
Physical Data Independence

All the schemas are logical, and the actual data is stored in bit format on the disk.
Physical data independence is the power to change the physical data without impacting the
schema or logical data.

For example, in case we want to change or upgrade the storage system itself — suppose
we want to replace hard-disks with SSD — it should not have any impact on the logical data or
schemas.

1.3.4. Data Modeling for a Database

Data models define how the logical structure of a database is modeled. Data Models are
fundamental entities to introduce abstraction in a DBMS. Data models define how data is
connected to each other and how they are processed and stored inside the system.

The data model plays an important role in database design. The physical or logical
structure of a database is spelt out by the data model. A data model is a collection of conceptual
tools used for describing data, data relationships, data semantics and data constraints. Evaluation
of different data models is still in progress as the primary objective is to evolve a high level data
model. The model should enable the designer to incorporate a major portion of semantics of the
database in the schema. Numerous data models have been proposed which can be broadly
classified in the following categories.

Data Models

Object Based Record Based Physical

Data Models Data Models Data Models
Entity - Relation- Retional Model Unifying Model
ship Model
T Network Model Frame Memory
Object - Oriented Hierarchical Model
Model Model

Figure 2: - Data Modeling

Classification of Data Models
1. Object based data models
2. Record — based data models
3. Physical data models
Object-based logical models
Object-based logical models are used in describing data at logical and view levels. They
are characterized by the fact they provide flexible structuring capabilities and allow data
constraints to be specified explicitly. There are many different data models, some of them are
1. The Entity-relationship model.
2. The Object-oriented model.
3. The semantic data model.
4. The Functional data model.
Record-based data models
These models are used to specify the overall logical structure of the database. With some
models a higher level description of the implementation of the structure of the database can also
be specified explicitly. The data integrity constraints cannot be specified explicitly with these
models. In record based data models, the database is structured in fixed formats records of
several types. Each record defines fixed number of fields (attributes) and each field is fixed
length. These models are used to specify the overall logical structure of the database and are used
in describing the database at conceptual level. The three widely accepted record — based data
models are
1. Relational model
2. Network model
3. Hierarchical model
Physical Data Models
Physical data model are used to describe data at the lowest level. In contrast to logical
data models, there are few number of physical data models which are in use. Very few physical
data models have been proposed so far.
Two of these well known models are the unifying model and the frame memory model.

1.4. ENTITIES AND THEIR ATTRIBUTES

Entity-relationship model is a model used for design and representation of relationships
between data.

The main data objects are termed as Entities, with their details defined as attributes, some
of these attributes are important and are used to identity the entity, and different entities are
related using relationships.

1.4.1. Entities

They are represented using the rectangle shape box. These rectangles are named with the
entity set they represent.

ER modeling is a top-down structure to database design that begins with identifying the
important data called entities and relationships in combination with the data that must be
characterized in the model. Then database model designers can add more details such as the
information they want to hold about the entities and relationships which are the attributes and
any constraints on the entities, relationships, and attributes. ER modeling is an important
technique for any database designer to master and forms the basis of the methodology.

> Entity type: It is a group of objects with the same properties that are identified by the
enterprise as having an independent existence. An entity type has an independent
existence within a database.

> Entity occurrence: A uniquely identifiable object of an entity type.

1.4.2. Attributes

Attributes are the properties of entities that are represented using ellipse shaped figures.
Every elliptical figure represents one attribute and is directly connected to its entity (which is
represented as a rectangle).

1.4.3. Relationship

A relationship type is a set of associations between one or more participating entity types.
Each relationship type is given a name that describes its function.

The entities occupied in a particular relationship type are referred to as participants in that
relationship. The number of participants involved in a relationship type is termed as the degree of
that relationship.

A diamond-shaped box represents relationships. All the entities (rectangle shaped)
participating in a relationship gets connected using a line.

There are four types of relationships. These are:

> One-to-one: When only a single instance of an entity is associated with the relationship, it
is termed as '1:1".

> One-to-many: When more than one instance of an entity is related and linked with a
relationship, it is termed as '1:N".

> Many-to-one: When more than one instance of an entity is linked with the relationship, it
is termed as 'N:1".

> Many-to-many: When more than one instance of an entity on the left and more than one
instance of an entity on the right can be linked with the relationship, then it is termed as

N:N relationship.

1.5. ADVANTAGES AND DISADVANTAGES OF DBMS

A database management system (DBMS) refers to the technology for creating and
managing databases. DBMS is a software tool to organize (create, retrieve, update and manage)
data in a database.

The main aim of a DBMS is to supply a way to store up and retrieve database
information that is both convenient and efficient. By data, we mean known facts that can be
recorded and that have embedded meaning.

A DBMS manage data and has many advantages. These are:
> Data independence: Application programs should be as free or independent as possible
from details of data representation and storage. DBMS can supply an abstract view of the
data for insulating application code from such facts.
> Efficient data access: DBMS utilizes a mixture of sophisticated concepts and techniques
for storing and retrieving data competently, and this feature becomes important in cases
where the data is stored on external storage devices.
> Data integrity and security: If data is accessed through the DBMS, the DBMS can
enforce integrity constraints on the data.
> Data administration: When several users share the data, integrating the administration of
data can offer major improvements. Experienced professionals understand the nature of
the data being managed and can be responsible for organizing the data representation to
reduce redundancy and make the data to retrieve efficiently.
Disadvantages of DBMS
e It's Complexity
o Except MySQL, which is open source, licensed DBMSs are generally costly.
e They are large in size.

1.6. DBMS VS RDBMS

A DBMS is software used to store and manage data. The DBMS was introduced during
1960's to store any data. It also offers manipulation of the data like insertion, deletion, and
updating of the data.

DBMS system also performs the functions like defining, creating, revising and
controlling the database. It is specially designed to create and maintain data and enable the
individual business application to extract the desired data.

Relational Database Management System (RDBMS) is an advanced version of a DBMS

system. It came into existence during 1970's. RDBMS system also allows the organization to
access data more efficiently then DBMS.

RDBMS is a software system which is used to store only data which need to be stored in

the form of tables. In this kind of system, data is managed and stored in rows and columns which
is known as tuple and attributes. RDBMS is a powerful data management system and is widely
used across the world.
The main differences between DBMS and RDBMS are given below:

No. DBMS RDBMS
1) | DBMS applications store data as file. EE)”I?MS applications store data in a tabular
In DBMS, data is generally stored in | In RDBMS, the tables have an identifier
2) | either a hierarchical form or a called primary key and the data values are
navigational form. stored in the form of tables.
3) g(ér'\r;lgllzatlon IS not present in Normalization is present in RDBMS.
RDBMS defines the integrity constraint for
DBM.S do<_as not apply any the purpose of ACID (Atomocity,
4) | security with regards to data : . A
. . Consistency, Isolation and Durability)
manipulation.
property.
DBMS uses file system to store data, in RDBMS, data values are stpred in the
; . form of tables, so a relationship between
5) | so there will be no relation between . .
these data values will be stored in the form of
the tables.
a table as well.
DBMS has to provide some uniform RDBMS system supports a tabular structure
6) | methods to access the stored of the data and a relationship between them
information. to access the stored information.
7) DBMS does not support distributed RDBMS supports distributed database.
database.
DBM.S Is meant to be fo_r small RDBMS is designed to handle large amount
8) | organization and deal with small data. . .
) . of data. it supports multiple users.
it supports single user.
9) Examples of DBMS are file Example of RDBMS are mysql, postgre, sql
systems, xml etc. server, oracle etc.

1.7. LET US SUM UP

In this unit, you have learnt about the database & database systems, significance and
applications of database system, entities and attributes of database system, and advantages and
disadvantages of database. This knowledge would make you understand the basics of database
and database management system concepts and comparison of DBMS with RDBMS used to
solve the real time problems. Thus, the database management system concepts unit would have
brought you to closer to know the concept of database systems.

1.8. UNIT — END QUESTIONS

1. List out the basic concepts of database management system.
2. Explain about the relationship between categories of programming languages.
3. Write about the advantages and disadvantages of DBMS.

1.9. ANSWER TO CHECK YOUR PROGRESS

1. A Database is a collection of related data organised in a way that data can be easily accessed,
managed and updated. Database can be software based or hardware based, with one sole
purpose, storing data. A DBMS is software that allows creation, definition and manipulation
of database, allowing users to store, process and analyse data easily. DBMS provides us with
an interface or a tool, to perform various operations like creating database, storing data in it,
updating data, creating tables in the database and a lot more. DBMS also provides protection
and security to the databases. It also maintains data consistency in case of multiple users.
Database management systems are important to businesses and organizations because they
provide a highly efficient method for handling multiple types of data. Some of the data that
are easily managed with this type of system include: employee records, student information,
payroll, accounting, project management, inventory and library books. These systems are
built to be extremely versatile.

2. ER modeling is a top-down structure to database design that begins with identifying the
important data called entities and relationships in combination with the data that must be
characterized in the model. A relationship type is a set of associations between one or more
participating entity types. Each relationship type is given a name that describes its function.

10

Attributes are the properties of entities that are represented using ellipse shaped figures.
Every elliptical figure represents one attribute and is directly connected to its entity.

. The main aim of a DBMS is to supply a way to store up and retrieve database information
that is both convenient and efficient. By data, we mean known facts that can be recorded and
that have embedded meaning. Disadvantages of DBMS are, it's Complexity, except MySQL,
which is open source, licensed DBMSs are generally costly and they are large in size.

11

UNIT Il - DATABASE SYSTEM ARCHITECTURE

Structure

UNIT Il - DATABASE SYSTEM ARCHITECTURE
2.1. Introduction
2.2. Objective
2.3. Three Level Architecture of DBMS
2.3.1. The External Level or Subschema
2.3.2. The Conceptual Level or Conceptual Schema
2.3.3. The Internal Level or Physical Schema
2.4. Mapping
2.5. MySQL Architecture
2.6. SQL Server 2000 Architecture
2.7. Oracle Architecture
2.8. Database Management System Facilities
2.9. Data Definition Language
2.10. Data Manipulation Language
2.11. Database Management System Structure
2.12. Database Manager
2.13. Database Administrator
2.14. Data Dictionary
2.15. Distributed Processing
2.16. Information and Communication Technology System (ICT)
2.17. Client / Server Architecture
2.18. Let Us Sum Up
2.19. Unit — End Exercises
2.20. Answer to Check Your Progress

2.1. INTRODUCTION

In this lesson you will be aware with the basic elements used to construct and manage the
databases. These elements include the architecture, facilities, DDL, DML, structure of DBMS
and players of DBMS. These basic elements are used to construct and manage the more
comprehensive database components. Some of the basic elements needs very detailed

12

information, however, the purpose of this type of basic elements is to introduce certain basic
concepts and to provide some necessary definitions for the topics that follow in next few lessons.

2.2. OBJECTIVES

After going through this lesson you would be in a positions to
» Three levels of architecture.
» DDL & DML languages.
» Define data dictionary and distributed processing.
» Explain the concept of ICT.

2.3. THREE LEVEL ARCHITECTURE OF DBMS

DBMS architecture helps in design, development, implementation, and maintenance of a
database. A database stores critical information for a business. Selecting the correct Database
Architecture helps in quick and secure access to this data.

There are mainly three levels of data abstraction:
1. Internal Level: Actual PHYSICAL storage structure and access paths.
2. Conceptual or Logical Level: Structure and constraints for the entire database.
3. External or View level: Describes various user views.

Figure 3: - Three Level Architecture of DBMS

2.3.1. External Schema/Level

An external schema describes the part of the database which specific user is interested in.
It hides the unrelated details of the database from the user. There may be "n™ number of external
views for each database.

13

Each external view is defined using an external schema, which consists of definitions of
various types of external record of that specific view.

An external view is just the content of the database as it is seen by some specific
particular user. For example, a user from the sales department will see only sales related data.
Facts about external schema:

> An external level is only related to the data which is viewed by specific end users.

> This level includes some external schemas.

> External schema level is nearest to the user.

> The external schema describes the segment of the database which is needed for a certain
user group and hides the remaining details from the database from the specific user

group.

2.3.2. Conceptual Schema/Level
The conceptual schema describes the Database structure of the whole database for the
community of users. This schema hides information about the physical storage structures and
focuses on describing data types, entities, relationships, etc.
This logical level comes between the user level and physical storage view. However,
there is only single conceptual view of a single database.
Facts about Conceptual schema:
> Defines all database entities, their attributes, and their relationships.
> Security and integrity information.
> In the conceptual level, the data available to a user must be contained in or derivable
from the physical level.

2.3.3. Internal Level/Schema
The internal schema defines the physical storage structure of the database. The internal
schema is a very low-level representation of the entire database. It contains multiple occurrences
of multiple types of internal record. In the ANSI term, it is also called "stored record'.
Facts about Internal schema:
> The internal schema is the lowest level of data abstraction.
> It helps you to keeps information about the actual representation of the entire database.
Like the actual storage of the data on the disk in the form of records.
> The internal view tells us what data is stored in the database and how.
> It never deals with the physical devices. Instead, internal schema views a physical device
as a collection of physical pages.
DBMS Architecture allows you to make changes on the presentation level without affecting the
other two layers

14

2.4. MAPPING

The DBMS is responsible for mapping between the three types of schemas. It must be
capable of checking the schema for consistency and must use the info. In the schema to map

between external schema and internal schema via the conceptual schema as shown in the figure
below:-

Application progl Application prog2 Application prog3 Application progd Aguery long processer

Figure 4: - Mapping of DBMS Architecture

Process of transforming request and results between three level it's called mapping.
There are the two types of mappings:

1. Conceptual/Internal Mapping
2. External/Conceptual Mapping

15

1. Conceptual/Internal Mapping:
> The conceptual/internal mapping defines the correspondence between the conceptual
view and the store database.
It specifies how conceptual record and fields are represented at the internal level.
It relates conceptual schema with internal schema.
If structure of the store database is changed.
If changed is made to the storage structure definition-then the conceptual/internal
mapping must be changed accordingly, so that the conceptual schema can remain
invariant.
> There could be one mapping between conceptual and internal levels.
2. External/Conceptual Mapping:
> The external/conceptual mapping defines the correspondence between a particular
external view and conceptual view.
> It relates each external schema with conceptual schema.
> The differences that can exist between these two levels are analogous to those that can
exist between the conceptual view and the stored database.
> Example: fields can have different data types; fields and record name can be changed;
several conceptual fields can be combined into a single external field.
> Any number of external views can exist at the same time; any number of users can share
a given external view: different external views can overlap.
> There could be several mapping between external and conceptual levels.

YV VYV V

2.5. MySQL ARCHITECTURE

MySQL is very different from other database servers, and its architectural characteristics
make it useful for a wide range of purposes as well as making it a poor choice for others.
MySQL is not perfect, but it is flexible enough to work well in very demanding environments,
such as web applications. At the same time, MySQL can power embedded applications, data
warehouses, content indexing and delivery software, highly available redundant systems, online
transaction processing (OLTP), and much more.

To get the most from MySQL, you need to understand its design so that you can work
with it, not against it. MySQL is flexible in many ways. For example, you can configure it to run
well on a wide range of hardware, and it supports a variety of data types. However, MySQL’s
most unusual and important feature is its storage-engine architecture, whose design separates
query processing and other server tasks from data storage and retrieval.

MySQL architecture is broken into three layers basically which can be defined by,

16

1. Application Layer.

2. Logical Layer.

3. Physical Layer.
1. Application Layer

The application layer is where the clients and users interact with the MySQL RDBMS.

All the services needed for connection handling, authentication, security are here. There are three
main components in this layer namely Administrators, Clients, Query Users as shown in the
below figure.

Application Layer

Applications and Interfaces

Administrative Client Interface

Interface and Utilities and Utilities Query Interface

mysql admin mysgl API's mysql
mysql dump C AP|, Python API
Java AFI

Figure 5: - Application Layer

» Administrators
Administrators use various administrative interface and utilities like mysgladmin
which performs tasks like shutting down the server and creating or dropping databases,
mysqldump for backing up the database or copying databases to another server.
» Clients
Clients communicate with MySQL through various interfaces and utilities like
MySQL API’s. The MySQL API sends the query to the server as a series of tokens.
» Query User
The query users interact with MySQL RDBMS through a query interface that
is mysql.
2. Logical Layer
The Logical Layer takes the data from the Application Layer. Any functionality provided
across storage engines lives at this level like stored procedures, triggers and views. It is divided
into subsystems like Query Processor, Transaction Management, Recovery Management, and
Storage Management. These subsystems work together to process the requests issued to the
MySQL database server. The output of one of the above subsystems becomes the input for
another. Below is the basic conceptional diagram.

17

Application Layer
| | |
Legical Layer
(uery Processor

Due Security- o

b 3
e Inpegration optimioer

Manager

Transaction Management Fecovery Management

Figure 6: - Logical Layer

3. Physical Layer

The third layer is the Physical Layer which contains the storage engines. They are
responsible for storing and retrieving all data stored in MySQL. Physical Layer of MySQL is
slightly different from other RDBMS. Here the physical system consists of Pluggable Storage
Engine architecture that enables storage engines to be loaded into and unloaded from a running
MySQL server.

MySQL stores each database (also called a schema) as a subdirectory of its data directory
in the underlying file system. Every database has a corresponding data directory. When you
create a table, MySQL stores the table definition in a .frm file with the same name as the table.

2.6. SQL SERVER 2000 ARCHITECTURE

Microsoft SQL Server provides a robust, if simpler, configuration for enterprise database
applications. Microsoft SQL Server uses a set of kernel-based libraries to manage the internal
database operations. Microsoft SQL Server divides its mechanism for data storage into the
concept of physical and logical storage into the physical medium of file groups, files, transaction
logs and the logical aspect into databases. Each database within a SQL Server environment is
assigned to its own set of file group and transaction logs stored on disk. Unlike an Oracle

18

environment that has a one-to-one correlation of one instance per database, the Microsoft SQL
Server 2000 architecture is quite a bit different.

SQL Server 2000 provides a set of components that work together to meet the needs of
the largest data processing systems and commercial Web sites while providing easy-to-use data
storage services to an individual or small business.

SQL Server 2000 consists of numerous components that interact to provide complete
database application capabilities, including relational database management, OLAP, data mining,
full-text indexing, data import and export, and replication, as well as client access, as depicted in
Figure 4.1. In the later chapters of this book, we review each of these components in detail and
assist you in configuring and using them in your applications. This chapter begins by exploring
the base components of SQL Server and its databases.

| s Web / Win32 Applications J

English Query 1

XML/ 1-SQL / MDX

ADO / ODBC / OLE DB / HTTP

: = / | Data Transformation
Analysis Server |/ Relational \‘. [Services

] Y Daabase |
I ' \ Engine /'L

Cubes \

Replication

— - —

System OLIP/OLAP User
Databases Databases
Figure 7: - SQL Server 2000 Architecture

SQL Server 2000 data is stored in databases. The data in a database is organized into the
logical components that are visible to users, while the database itself is physically implemented
as two or more files on disk.

Logical Database Components
The logical database components include objects, collations, logins, users, roles, and

groups.
An object in a SQL Server 2000 database can use a collation different from another
object within that same database.

19

Collations control the physical storage of character strings in SQL Server 2000. A
collation specifies the bit patterns that represent each character and the rules by which characters
are sorted and compared.

Logins, users, roles, and groups are the foundation for the security mechanisms of SQL
Server 2000. Users who connect to SQL Server must identify themselves by using a Specific
Login Identifier (ID). Users can then see only the tables and views that they are authorized to see
and can execute only the stored procedures and administrative functions that they are authorized
to execute. This system of security is based on the IDs used to identify users.

Physical Database Architecture

The fundamental unit of data storage in SQL Server is the page. In SQL Server 2000, the
page size is 8 kilobytes (KB). In other words, SQL Server 2000 databases contain 128 pages per
megabyte (MB).

The start of each page is a 96-byte header used to store system information, such as the
type of page, the amount of free space on the page, and the object ID of the object owning the
page.

Extents are the basic unit in which space is allocated to tables and indexes. An extent is
eight contiguous pages, or 64 KB. In other words, SQL Server 2000 databases have 16 extents
per megabyte.

2.7. ORACLE ARCHITECTURE

An Oracle database is a collection of data treated as a unit. The purpose of a database is
to store and retrieve related information. A database server is the key to solving the problems of
information management. In general, a server reliably manages a large amount of data in a
multiuser environment so that many users can concurrently access the same data. All this is
accomplished while delivering high performance. A database server also prevents unauthorized
access and provides efficient solutions for failure recovery.

Oracle Database is the first database designed for enterprise grid computing, the most
flexible and cost effective way to manage information and applications. Enterprise grid
computing creates large pools of industry-standard, modular storage and servers. With this
architecture, each new system can be rapidly provisioned from the pool of components. There is
no need for peak workloads, because capacity can be easily added or reallocated from the
resource pools as needed.

The database has logical structures and physical structures. Because the physical and
logical structures are separate, the physical storage of data can be managed without affecting the
access to logical storage structures.

20

https://docs.oracle.com/cd/B19306_01/server.102/b14220/glossary.htm#i432724

In the following sections we discuss the main components of the Oracle DBMS
architecture and the logical and physical database structures.
Logical Database Structures
For the architecture of an Oracle database we distinguish between logical and physical
database structures that make up a database. Logical structures describe logical areas of storage
(name spaces) where objects such as tables can be stored. Physical structures, in contrast, are
determined by the operating system files that constitute the database. The logical database
structures include:
» Database: -
A database consists of one or more storage divisions, so-called tablespaces.
» Tablespaces: -
A tablespace is a logical division of a database. All database objects are logically
stored in tablespaces.
» Segments: -
If a database object (e.g., a table or a cluster) is created, automatically a portion of
the tablespace is allocated. This portion is called a segment..
» Extent: -
An extent is the smallest logical storage unit that can be allocated for a database
object, and it consists a contiguous sequence of data blocks.
Physical Database Structure
The physical database structure of an Oracle database is determined by files and data blocks:
» Data Files: -
A tablespace consists of one or more operating system files that are stored on
disk. Thus a database essentially is a collection of data files that can be stored on
different storage devices.
> Blocks: -
An extent consists of one or more contiguous Oracle data blocks. A block
determines the finest level of granularity of where data can be stored. One data
block corresponds to a specific number of bytes of physical database space on
disk.
» Redo-Log Files: -
Each database instance maintains a set of redo-log files. These files are used to
record logs of all transactions. The logs are used to recover the database’s
transactions in their proper order in the event of a database crash.
» Control Files: -
Each database instance has at least one control file. In this file the name of the
database instance and the locations (disks) of the data files and redo-log files are
recorded.
» Archive/Backup Files: -

21

If an instance is running in the archive-log mode, the ARCH process archives the
modifications of the redo-log files in extra archive or backup files. In contrast to
redo-log files, these files are typically not overwritten.

2.8. DATABASE MANAGEMENT SYSTEM FACILITIES

Typically, a DBMS provides the following facilities
» Data Definition Language (DDL)

It allows a database designer to define the database using a Data Definition
Language (DDL) provided for the particular DBMS. The DDL allows the designer to
specify the data types and structures, and the constraints on the data to be stored in the
database.

» Data Manipulation Language (DML)

It allows users to insert, update, delete and retrieve data from the database through
a Data Manipulation Language (DML). Having a central repository for all data and data
descriptions allows the DML to provide a general enquiry facility to this data, called a
query language. Using a query language, directly or indirectly, enables new lines of
enquiry to be constructed and satisfied quickly. A query language is sufficiently high
level to allow non-technical personnel to use it, easily. The most common query language
is the Structured Query Language (SQL —pronounced ‘S-Q-L’).

» View Mechanism

The DBMS provides a view mechanism that allows each user to have his or her
own view of the database. The DDL is used to define a view that is a subset of the
database.

» Multiple indexes

An index is a mechanism for reducing the time taken to find a specific item of
data in a database. A database index works in a similar way to a user of the index in this
book. If you want to use this book to find out about the topic “multiple indexes“then you
have a choice.

An index in a database can store each value of an indexed data item (field), e.g.
student enrolment number, together with the page number in the storage medium where
the data belonging to this value is stored. For example, information stored in a database
about a particular student such as surname, home address, et cetera may be quickly found
if an index has been created that stores every student’s enrolment number and the
location of the corresponding information.

22

Indexes may also be created on other fields of a student’s record, e.g. surname,
address. However, since some fields such as the surname are unlikely to be unique, the
entries in the index may reference more than one location, just like the entries in the
index for this book. An index on a unique field is known as a primary index whereas an
index on a non-unique field is known as a secondary index.

» Indexing Overheads

Indexes have to be constantly kept up to date. When a new data value is added or
modified the corresponding index must be updated. This takes time. This is called an
update overhead.

2.9. DATA DEFINITION LANGUAGE

Data Definition language (DDL) in DBMS with Examples: Data Definition Language
can be defined as a standard for commands through which data structures are defined. It is a
computer language that used for creating and modifying the structure of the database objects,
such as schemas, tables, views, indexes, etc. Additionally, it assists in storing the metadata
details in the database.

Some of the common Data Definition Language commands are:
> CREATE
> ALTER
> DROP

CREATE- Data Definition language (DDL)

The main use of the create command is to build a new table and it comes with a
predefined syntax. It creates a component in a relational database management system. There are
many implementations that extend the syntax of the command to create the additional elements,
like user profiles and indexes.

The general syntax for the create command in Data Definition Language is mentioned below:
CREATE TABLE tablename (Columnl DATATYPE, Column2 DATATYPE, Column3
DATATYPE, ColumnN DATATYPE)

ALTER- Data Definition language (DDL)

An existing database object can be modified by the ALTER statement. Using this
command, the users can add up some additional column and drop existing columns.
Additionally, the data type of columns involved in a database table can be changed by the
ALTER command.

The general syntax of the ALTER command is mentioned below:

23

ALTER TABLE table_name ADD column_name (for adding a new column).

ALTER TABLE table_name RENAME To new_table_name (for renaming a table).
ALTER TABLE table_name MODIFY column_name data type (for modifying a column).
ALTER TABLE table_name DROP COLUMN column_name (for deleting a column).
Drop- Data Definition language (DDL)

By the use of this command, the users can delete an index, table or view. A component
from a relational database management system can be removed by a DROP statement in SQL.

There are many systems that allow the DROP and some other Data Definition Language
commands for occurring inside a transaction and then it can be rolled back.

The object will not be available for use once the DROP statement executed.
The General syntax of the Drop command is mentioned below:

DROP TABLE table_name;

DROP DATABASE database_name;

DROP TABLE Student;

DROP TABLE index_name;

Truncate- Data Definition language (DDL)

By using the Truncate command, the users can remove the table content, but the structure
of the table is kept. In simple language, it removes all the records from the table structure. The
users can’t remove data partially through this command. In addition to this, every space allocated
for the data is removed by Truncate command.

The syntax of the Truncate command is mentioned below:
TRUNCATE TABLE table_name;
TRUNCATE TABLE Student;

2.10. DATA MANIPULATION LANGUAGE

Data Manipulation Language (DML) can be defined as a set of syntax elements that are
used to manage the data in the database. The commands of DML are not auto-committed and
modification made by them is not permanent to the database. It is a computer programming
language that is used to perform select, insert, delete and update data in a database. The user
requests are assisted by Data Manipulation Language. This language is responsible for all forms
of data modification in a database.

A data manipulation language (DML) is a family of computer languages including
commands permitting users to manipulate data in a database. This manipulation involves
inserting data into database tables, retrieving existing data, deleting data from existing tables and
modifying existing data. DML is mostly incorporated in SQL databases.

24

DML resembles simple English language and enhances efficient user interaction with the
system. The functional capability of DML is organized in manipulation commands like
SELECT, UPDATE, INSERT INTO and DELETE FROM, as described below:

> SELECT: This command is used to retrieve rows from a table. The syntax is SELECT

[column name(s)] from [table name] where [conditions]. SELECT is the most widely
used DML command in SQL.

> UPDATE: This command modifies data of one or more records. An update command

syntax is UPDATE [table name] SET [column name = value] where [condition].

> INSERT: This command adds one or more records to a database table. The insert

command syntax is INSERT INTO [table name] [column(s)] VALUES [value(s)].

> DELETE: This command removes one or more records from a table according to

specified conditions. Delete command syntax is DELETE FROM [table name] where
[condition].

2.11. DATABASE MANAGEMENT SYSTEM STRUCTURE

A database is an organized collection of data. Instead of having all the data in a list with a
random order, a database provides a structure to organize the data. One of the most common data
structures is a database table. A database table consists of rows and columns. A database table is
also called a two-dimensional array. An array is like a list of values, and each value is identified
by a specific index. A two-dimensional array uses two indices, which correspond to the rows and
columns of a table.

In database terminology, each row is called a record. A record is also called an object or
an entity. In other words, a database table is a collection of records. The records in a table are the
objects you are interested in, such as the books in a library catalog or the customers in a sales
database. A field corresponds to a column in the table and represents a single value for each
record. A field is also called an attribute. In other words, arecord is a collection of related
attributes that make up a single database entry.

DBMS (Database Management System) acts as an interface between the user and the
database. The user requests the DBMS to perform various operations (insert, delete, update and
retrieval) on the database. The components of DBMS perform these requested operations on the
database and provide necessary data to the users. The various components of DBMS are shown
below: -

25

Application End User DOL
I j_‘ _I—

—_— DML Com piler DOL

Query Optimizer Compiler

—

Stored Data Manager

———

Data Compiled Data
Files DML Dictionary

DBMS
|

Figure 8: - DBMS Structure

1. DDL Compiler - Data Description Language compiler processes schema definitions
specified in the DDL. It includes metadata information such as the name of the files, data items,
storage details of each file, mapping information and constraints etc.

2. DML Compiler and Query optimizer - The DML commands such as insert, update,
delete, retrieve from the application program are sent to the DML compiler for compilation into
object code for database access. The object code is then optimized in the best way to execute a
query by the query optimizer and then send to the data manager.

3. Data Manager - The Data Manager is the central software component of the DBMS
also knows as Database Control System.

The Main Functions Of Data Manager Are: —

» Convert operations in user's Queries coming from the application programs or
combination of DML Compiler and Query optimizer which is known as Query Processor
from user's logical view to physical file system.

Controls DBMS information access that is stored on disk.

It also controls handling buffers in main memory.

It also enforces constraints to maintain consistency and integrity of the data.

It also synchronizes the simultaneous operations performed by the concurrent users.

It also controls the backup and recovery operations.

4. Data Dictionary - Data Dictionary is a repository of description of data in the database. It
contains information about

YVYVYYVYV

26

» Data - names of the tables, names of attributes of each table, length of attributes, and
number of rows in each table.
> Relationships between database transactions and data items referenced by them which is
useful in determining which transactions are affected when certain data definitions are
changed.
» Constraints on data i.e. range of values permitted.
> Detailed information on physical database design such as storage structure, access paths,
files and record sizes.
» Access Authorization - is the Description of database users their responsibilities and their
access rights.
» Usage statistics such as frequency of query and transactions.
Data dictionary is used to actually control the data integrity, database operation and
accuracy. It may be used as a important part of the DBMS.
Importance of Data Dictionary -
Data Dictionary is necessary in the databases due to following reasons:
> It improves the control of DBA over the information system and user's understanding of
use of the system.
It helps in documentating the database design process by storing documentation of the
result of every design phase and design decisions.
It helps in searching the views on the database definitions of those views.
It provides great assistance in producing a report of which data elements (i.e. data values)
are used in all the programs.
It promotes data independence i.e. by addition or modifications of structures in the
database application program are not affected.
5. Data Files - It contains the data portion of the database.
6. Compiled DML - The DML complier converts the high level Queries into low level file access
commands known as compiled DML.
7. End Users - They are already discussed in previous section.

Y VV V

2.12. DATABASE MANAGER

The data manager is the central software component of the DBMS. It is sometimes
referred to as the database control system. One of the functions of the data manager is to convert
operations in the user’s queries coming directly via the query processor or indirectly via an
application program from user’s logical view to a physical file system. The data manager is
responsible for interfacing with the file system. In addition, the tasks of enforcing constraints to

27

maintain the consistency and integrity of the data, as well as its security, are also performed by
the data manager. Synchronizing the simultaneous operations performed by concurrent users is
under the control of the data manager. It is also entrusted with the backup and recovery
operations.

A database manager (DB manager) is a computer program, or a set of computer
programs, that provide basic database management functionalities including creation and
maintenance of databases. Database managers have several capabilities including the ability to
back up and restore, attach and detach, create, clone, delete and rename the databases.

Database managers are used to manage local and remote databases. They discover
databases based on the Web server and provide the ability to connect to any of the databases
residing in the network. They provide a handful of administrative functionalities such as
managing tables, views and stored procedures, as well as run ad hoc queries.

DB managers connect to the database and display information from catalogs that are part
of a database. DB managers can have a set of command-line parameters, which allow them to
initiate features and functions external to the graphical user interface.

DB managers allow database administrators to define new patches for databases or to
easily apply new patches that come from vendors, thus updating databases with enhancements
and keeping them secure.

2.13. DATABASE ADMINISTRATOR

Centralized control of the database is exerted by a person or group of persons under the
supervision of a high-level administrator. This person or group is referred to as the database
administrator (DBA). They are the users who are most familiar with the database and are
responsible for creating, modifying, and maintaining its three levels. Database Administrator is
responsible to manage the DBMS’s use and ensure that the database is functioning properly.

DBA administers the three levels of database and consultation with the overall user
community, sets up the definition of the global view of the various users and applications and is
responsible the definition and implementation of the internal level, including the storage
structure and access methods to be used for the optimum performance of the DBMS. DBA is
responsible for granting permission to the users of the database and stores the profile of each user
in the database.

Responsibilities

Designing & creating relational database objects such as tables, views & indexes;
Supporting and maintaining the environment a relational database requires to properly function
(i.e., security, recovery, backup & reorganizations) ; Ensuring that relational database access
code performs efficiently (i.e., SQL review, database monitoring).

28

Activities - Central DBA

>

>
>

Developing & maintaining naming standards for database objects such as tablespaces,
tables, indexes & views

Participating in database migration reviews

Assisting in product installation & reviewing initial installation options; for Oracle, the
Central DBA will assist in product installation and specify initial installation options
Providing functional guidance to the systems programmer & the operator. For Oracle, the
Central DBA will provide this functional guidance to the Unix System Administrator.
Evaluating & testing DBMS related software

Develop operational procedures ¢ Supporting, monitoring & tuning the database
subsystems & instances; for Oracle this includes starting and stopping the instances,
listeners, and intelligent agents

Participate in selecting database management support tools

Developing & implementing database administration policies & procedures including
subsystem or instance security guidelines

These are the functions of a data administrator (not to be confused with database

administrator functions):

VV VYV VYV

Data policies, procedures, standards

Planning- development of organization's IT strategy, enterprise model, cost/benefit
model, design of database environment, and administration plan.

Data conflict (ownership) resolution

Data analysis- Define and model data requirements, business rules, operational
requirements, and maintain corporate data dictionary

Internal marketing of DA concepts

Managing the data repository

2.14. DATA DICTIONARY

A data dictionary contains metadata i.e data about the database. The data dictionary is

very important as it contains information such as what is in the database, who is allowed to
access it, where is the database physically stored etc. The users of the database normally don't
interact with the data dictionary; it is only handled by the database administrators.

The data dictionary in general contains information about the following:

>
>

>

Names of all the database tables and their schemas.

Details about all the tables in the database, such as their owners, their security
constraints, when they were created etc.

Physical information about the tables such as where they are stored and how.

29

Table constraints such as primary key attributes, foreign key information etc.
Information about the database views that are visible.
The different types of data dictionary are:
Active Data Dictionary
If the structure of the database or its specifications changes at any point of time, it should
be reflected in the data dictionary. This is the responsibility of the database management
system in which the data dictionary resides.
> So, the data dictionary is automatically updated by the database management system
when any changes are made in the database. This is known as an active data dictionary as
it is self updating.
> Passive Data Dictionary
> This is not as useful or easy to handle as an active data dictionary. A passive data
dictionary is maintained separately to the database whose contents are stored in the
dictionary. That means that if the database is modified the database dictionary is not
automatically updated as in the case of Active Data Dictionary.
> So, the passive data dictionary has to be manually updated to match the database. This
needs careful handling or else the database and data dictionary are out of sync.

A data dictionary is a file or a set of files that contains a database's metadata. The data
dictionary contains records about other objects in the database, such as data ownership, data
relationships to other objects, and other data.

The data dictionary is a crucial component of any relational database. Ironically, because
of its importance, it is invisible to most database users. Typically, only database administrators
interact with the data dictionary.

In a relational database, the metadata in the data dictionary includes the following:

> Names of all tables in the database and their owners

> Names of all indexes and the columns to which the tables in those indexes relate

> Constraints defined on tables, including primary keys, foreign-key relationships to other

tables, and not-null constraints

For most relational database management systems (RDBMS), the database management system
software needs the data dictionary to access the data within a database. For example, the Oracle
DB software has to read and write to an Oracle DB. However, it can only do this via the data
dictionary created for that particular database.

YV VYV VYV

2.15. DISTRIBUTED PROCESSING

In distributed processing, a database’s logical processing is shared among two or more
physically independent sites that are connected through a network. For example, the data

30

input/output (I/O), data selection, and data validation might be performed on one computer, and
a report based on that data might be created on another computer.

A distributed database, on the other hand, stores a logically related database over two or
more physically independent sites. The sites are connected via a computer network. In contrast,
the distributed processing system uses only a single-site database but shares the processing
chores among several sites. In a distributed database system, a database is composed of several
parts known as database fragments. The database fragments are located at different sites and can
be replicated among various sites. Each database fragment is, in turn, managed by its local
database process.

> Distributed processing does not require a distributed database, but a distributed database
requires distributed processing.
> Distributed processing may be based on a single database located on a single computer.
For the management of distributed data to occur, copies or parts of the database
processing functions must be distributed to all data storage sites.
> Both distributed processing and distributed databases require a network to connect all
components.
Distributed data processing is a computer-networking method in which multiple computers
across different locations share computer-processing capability. This is in contrast to a single,
centralized server managing and providing processing capability to all connected systems.
Computers that comprise the distributed data-processing network are located at different
locations but interconnected by means of wireless or satellite links.
Lower Cost

Larger organizations invest in expensive mainframe and supercomputers to function as
centralized servers. Each mainframe machine,
Reliable

Hardware glitches and software anomalies can cause single-server processing to
malfunction and fail, resulting in a complete system breakdown. Distributed data processing is
more reliable, since multiple control centers are spread across different machines.

Improved Performance and Reduced Processing Time

Single computers are limited in their performance and efficiency. An easy way to
increase performance is by adding another computer to a network. Adding yet another computer
will further augment performance, and so on. Distributed data processing works on this principle
and holds that a job gets done faster if multiple machines are handling it in parallel, or
synchronously.

Flexible

Individual computers that comprise a distributed network are present at different
geographical locations. For example, an organizational-distributed network comprising of three
computers can have each machine in a different branch. The three machines are interconnected
via the Internet and are able to process data in parallel, even while at different locations. This

31

makes distributed data-processing networks more flexible. The system is flexible also in terms of
increasing or decreasing processing power.

2.16. INFORMATION AND COMMUNICATION TECHNOLOGY
SYSTEM

Information and communications technology (ICT) is an extensional term for information
technology (IT) that stresses the role of unified communicationsand the integration
of telecommunications (telephone lines and wireless signals) and computers, as well as
necessary enterprise software, middleware, storage, and audiovisual systems, that enable users to
access, store, transmit, and manipulate information.

ICT is technology that supports activities involving information. Such activities include
gathering, processing, storing and presenting data. Increasingly these activities also involve
collaboration and communication. Hence IT has become ICT: information and communication
technology.

The term ICT is also used to refer to the convergence of audiovisual and telephone
networks with computer networks through a single cabling or link system. There are large
economic incentives to merge the telephone network with the computer network system using a
single unified system of cabling, signal distribution, and management. ICT is an umbrella term
that includes any communication device, encompassing radio, television, cell phones, computer
and network hardware, satellite systems and so on, as well as the various services and appliance
with them such as video conferencing and distance learning.

ICT is a broad subject and the concepts are evolving. It covers any product that will store,
retrieve, manipulate, transmit, or receive information electronically in a digital form (e.g.,
personal computers, digital television, email, or robots). The different types of communication in
ICT include electronic mail, video conferencing, facsimile and telephone conferencing. ICT
communication deals with storage, retrieval transmission and manipulation of digital
information. ICT communication uses ICT devices to connect businesses, organizations and
individuals.

Electronic mail is the common form of electronic communication used for transmitting
and receiving digital information. Emails are essential in sending messages, pictures files and
other attachments. Firms and organizations use emails for business purposes and as a medium for
communication with employees, personnel and clients. Facsimile is another common means of
ICT communication used for sending messages over the telephone network. Modern fax
machines are digital, making it possible to send a message over a wireless connection. Faxes can
be sent over a wireless connection and received by the fax machine of the recipient.

32

https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Unified_communications
https://en.wikipedia.org/wiki/Telecommunications
https://en.wikipedia.org/wiki/Telephone
https://en.wikipedia.org/wiki/Enterprise_software
https://en.wikipedia.org/wiki/Middleware
https://en.wikipedia.org/wiki/Convergence_(telecommunications)
https://en.wikipedia.org/wiki/Telephone_network
https://en.wikipedia.org/wiki/Telephone_network
https://en.wikipedia.org/wiki/Computer_network

Video conferencing is the best communication medium when companies want to reach
different people across different time zones or countries. This medium uses a camera,
loudspeakers, Internet connections and microphone to connect different people at the same time.
The equipment used allows everyone to see, speak and listen to each other. Another type of ICT
communication is telephone conferencing. Phone conferences allow participants to listen to each
other. They are connected through a phone call using an option of conferencing. Participants
enter a unique code or number to bridge the call.

Useful concept of ICT

It depends on the local culture and the particular ICT available and how it is configured
and managed. The understanding, management and configuration of the available technology
might vary the concept of ICT from

» A collection of tools and devices used for particular tasks, eg, publishing, course
delivery, and transaction processing...
An organised set of equipment (like a 'workshop") for working on information and
communication.
Components of integrated arrangements of devices, tools, services and practices
that enable information to be collected, processed, stored and shared with others.
Components in a comprehensive system of people, information and devices that
enables learning, problem solving and higher order collaborative thinking, that is,
ICT as key elements underpinning a (sharable) workspace.

YV VYV VvV

2.17. CLIENT/SERVER ARCHITECTURE

Client-Server architecture is an architectural deployment style that describes the
separation of functionality into layers with each segment being a tier that can be located on a
physically separate computer. They evolved through the component-oriented approach, generally
using platform specific methods for communication instead of a message-based approach.

This architecture has different usages with different applications. It can be used in web
applications and distributed applications. The strength in particular is when using this
architecture over distributed systems. In this course work, | will furthermore invest this through
the example of three-tier architecture in web applications.

Structure

Using this architecture the software is divided into 3 different tiers: Presentation tier, Logic
tier, and Data tier. Each tier is developed and maintained as an independent tier.

> 1-Presentation tier

33

http://en.wikipedia.org/wiki/Multitier_architecture
http://en.wikipedia.org/wiki/Component-based_software_engineering

This is the topmost level of the application. The presentation layer provides the
application’s user interface (UI). Typically, this involves the use of Graphical User
Interface for smart client interaction, and Web based technologies for browser-based
interaction. The presentation tier displays information related to such services as
browsing merchandise, purchasing, and shopping cart contents. It communicates with
other tiers by outputting results to the browser/client tier and all other tiers in the
network.

» 2-Logic tier (called also business logic, data access tier, or middle tier)

The logic tier is pulled out from the presentation tier and, as its own layer; it
controls an application’s functionality by performing detailed processing. Logic tier is
where mission-critical business problems are solved. The components that make up this
layer can exist on a server machine, to assist in resource sharing. These components can
be used to enforce business rules, such as business algorithms and legal or governmental
regulations, and data rules, which are designed to keep the data structures consistent
within either specific or multiple databases. Because these middle-tier components are
not tied to a specific client, they can be used by all applications and can be moved to
different locations, as response time and other rules require.

» 3-Data tier

This tier consists of database servers, is the actual DBMS access layer. It can be
accessed through the business services layer and on occasion by the user services layer.
Here information is stored and retrieved. This tier keeps data neutral and independent
from application servers or business logic. Giving data its own tier also improves
scalability and performance. This layer consists of data access components (rather than
raw DBMS connections) to aid in resource sharing and to allow clients to be configured
without installing the DBMS libraries and ODBC drivers on each client.

The basic characteristics of client/server architectures are:

» Combination of a client or front-end portion that interacts with the user, and a server
or back-end portion that interacts with the shared resource. The client process
contains solution-specific logic and provides the interface between the user and the rest
of the application system. The server process acts as a software engine that manages
shared resources such as databases, printers, modems, or high powered processors.

» The front-end task and back-end task have fundamentally different requirements for
computing resources such as processor speeds, memory, disk speeds and capacities, and
input/output devices.

> The environment is typically heterogeneous and multivendor. The hardware platform
and operating system of client and server are not usually the same.Client and server
processes communicate through a well-defined set of standard application program
interfaces (API's) and RPC's.

34

http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/World_Wide_Web
http://ecomputernotes.com/fundamental/input-output-and-memory/what-is-a-printer-and-what-are-the-different-types-of-printers
http://ecomputernotes.com/fundamental/input-output-and-memory/list-various-input-and-output-devices
http://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system

> An important characteristic of client-server systems is scalability. They can be scaled
horizontally or vertically. Horizontal scaling means adding or removing client
workstations with only a slight performance impact. Vertical scaling means migrating to
a larger and faster server machine or multi servers.

2.18. LET US SUM UP

In this unit, you have learnt about the architecture of DBMS, DDL & DML, Database
administrator & Database manager, data dictionary and distributed Processing. This knowledge
would make you understand the three level architecture of DBMS, various languages used in
database development, the players participated in database system management and the concept
of ICT placed in database. Thus, the database system architecture unit would have brought you
to closer to know the concept of database systems architecture and players of database
management.

2.19. UNIT — END QUESTIONS

1. Discuss about the three level architecture of DBMS.
2. Describe about the use of DDL and DML in detail.
3. Write about the role of database administrator & manager in DBMS.

2.20. ANSWER TO CHECK YOUR PROGRESS

1. DBMS architecture helps in design, development, implementation, and maintenance of a
database. A database stores critical information for a business. Selecting the correct database
architecture helps in quick and secure access to this data. There are mainly three levels of
data abstraction: 1. Internal Level: Actual PHYSICAL storage structure and access paths, 2.
Conceptual or Logical Level: Structure and constraints for the entire database, 3. External or
View level: Describes various user views.

2. Data Definition language (DDL) in DBMS with Examples: Data Definition Language can be
defined as a standard for commands through which data structures are defined. It is a
computer language that used for creating and modifying the structure of the database objects,
such as schemas, tables, views, indexes, etc. Additionally, it assists in storing the metadata

35

details in the database. Data Manipulation Language (DML) can be defined as a set of syntax
elements that are used to manage the data in the database. The commands of DML are not
auto-committed and modification made by them is not permanent to the database. It is a
computer programming language that is used to perform select, insert, delete and update data
in a database. The user requests are assisted by Data Manipulation Language. This language
is responsible for all forms of data modification in a database.

. The data manager is the central software component of the DBMS. It is sometimes referred
to as the database control system. One of the functions of the data manager is to convert
operations in the user’s queries coming directly via the query processor or indirectly via an
application program from user’s logical view to a physical file system. The data manager is
responsible for interfacing with the file system. DBA administers the three levels of database
and consultation with the overall user community, sets up the definition of the global view of
the various users and applications and is responsible the definition and implementation of the
internal level, including the storage structure and access methods to be used for the optimum
performance of the DBMS. DBA is responsible for granting permission to the users of the
database and stores the profile of each user in the database.

36

UNIT 11l - DATABASE MODELS AND IMPLEMENTATION

Structure

UNIT 111 - DATABASE MODELS AND IMPLEMENTATION
3.1. Introduction
3.2. Objective
3.3. Data Model and Types of Data
3.3.1. Relational Data Model
3.3.2. Hierarchical Model
3.3.3. Network Data Model
3.3.4. Object / Relational Model
3.3.5. Object-Oriented Model
3.3.6. Entity-Relationship Model
3.3.6.1. Modeling using E-R Diagrams
3.3.6.2. Notation used in E-R Model
3.3.7. Relationships and relationship Types
3.3.8. Associative database Model
3.4. Let Us Sum Up
3.5. Unit — End Exercises
3.6. Answer to Check Your Progress

3.1. INTRODUCTION

In this lesson you will be aware with the various data models used to construct the simple
database systems. These elements include the various data models like relational data model,
Hierarchical model, network data model, object relational model, object oriented model, ER
model and associative database model. These elements are used to construct more
comprehensive database system. Some of the elements need very detailed information; however,
the purpose of this type of data models is to introduce certain.

3.2. OBJECTIVES

After going through this lesson you would be in a positions to
» Various database models used in DBMS.

37

» Entity-Relationship Model and its notations.
» Define relationship and types of relationship.

3.3. DATA MODEL AND TYPES OF DATA

Data modeling is the process of creating a data model for the data to be stored in a

Database. This data model is a conceptual representation of
o Data objects
e The associations between different data objects
e Therules.

Data modeling helps in the visual representation of data and enforces business rules,
regulatory compliances, and government policies on the data. Data Models ensure consistency in
naming conventions, default values, semantics, and security while ensuring quality of the data.

Data model emphasizes on what data is needed and how it should be organized instead of
what operations need to be performed on the data. Data Model is like architect's building plan
which helps to build a conceptual model and set the relationship between data items.

3.3.1. Relational Data Model

The relational model represents the database as a collection of relations. A relation is
nothing but a table of values. Every row in the table represents a collection of related data values.
These rows in the table denote a real-world entity or relationship.

The table name and column names are helpful to interpret the meaning of values in each
row. The data are represented as a set of relations. In the relational model, data are stored as
tables. However, the physical storage of the data is independent of the way the data are logically
organized.

Relational Model Concepts

1. Attribute: Each column in a Table. Attributes are the properties which define a relation.

e.g., Student_Rollno, NAME etc.

2. Tables — In the Relational model the, relations are saved in the table format. It is stored
along with its entities. A table has two properties rows and columns. Rows represent
records and columns represent attributes.

Tuple — It is nothing but a single row of a table, which contains a single record.

4. Relation Schema: A relation schema represents the name of the relation with its
attributes.

5. Degree: The total number of attributes which in the relation is called the degree of the
relation.

w

38

o

Cardinality: Total number of rows present in the Table.
Column: The column represents the set of values for a specific attribute.
Relation instance — Relation instance is a finite set of tuples in the RDBMS system.
Relation instances never have duplicate tuples.
9. Relation key - Every row has one, two or multiple attributes, which is called relation key.
10. Attribute domain — Every attribute has some pre-defined value and scope which is known
as attribute domain
Operations in Relational Model
Four basic update operations performed on relational database model are,
Insert, update, delete and select.
« Insert is used to insert data into the relation
o Delete is used to delete tuples from the table.
« Modify allows you to change the values of some attributes in existing tuples.
o Select allows you to choose a specific range of data.
Constraints
Every relation has some conditions that must hold for it to be a valid relation. These
conditions are called Relational Integrity Constraints. There are three main integrity constraints,
o Key constraints
« Domain constraints
o Referential integrity constraints
» Key Constraints
There must be at least one minimal subset of attributes in the relation, which can
identify a tuple uniquely. This minimal subset of attributes is called key for that relation.
If there are more than one such minimal subsets, these are called candidate keys.
» Domain Constraints
Attributes have specific values in real-world scenario. For example, age can only
be a positive integer. The same constraints have been tried to employ on the attributes of
a relation. Every attribute is bound to have a specific range of values. For example, age
cannot be less than zero and telephone numbers cannot contain a digit outside 0-9.
» Referential integrity Constraints
Referential integrity constraints work on the concept of Foreign Keys. A foreign
key is a key attribute of a relation that can be referred in other relation.
Referential integrity constraint states that if a relation refers to a key attribute of a
different or same relation, then that key element must exist.

o ~

3.3.2. Hierarchical Model
A hierarchical model represents the data in a tree-like structure in which there is a single
parent for each record. To maintain order there is a sort field which keeps sibling nodes into a

39

recorded manner. These types of models are designed basically for the early mainframe
database management systems, like the Information Management System (IMS) by IBM.

This model structure allows the one-to-one and a one-to-many relationship between two/
various types of data. This structure is very helpful in describing many relationships in the real
world; table of contents, any nested and sorted information.

The hierarchical structure is used as the physical order of records in storage. One can
access the records by navigating down through the data structure using pointers which are
combined with sequential accessing. Therefore, the hierarchical structure is not suitable for
certain database operations when a full path is not also included for each record.

Data in this type of database is structured hierarchically and is typically developed as an
inverted tree. The "root" in the structure is a single table in the database and other tables act as
the branches flowing from the root. The diagram below shows a typical hierarchical database
structure.

College
Department Infrastructure
y Y y
Course Teachers Students

Theory Labs

Figure 9: - Hierarchical Data Model

A user can access the data by starting at the root table and working down through the tree
to the target data. the user must be familiar with the structure of the database to access the data
without any complexity.

Advantages

1. A user can retrieve data very quickly due to the presence of explicit links between the
table structures.

2. The referential integrity is built in and automatically enforced due to which a record in a
child table must be linked to an existing record in a parent table, along with that if a
record deleted in the parent table then that will cause all associated records in the child
table to be deleted as well.

40

Disadvantages
1. When a user needs to store a record in a child table that is currently unrelated to any
record in a parent table, it gets difficulty in recording and user must record an additional
entry in the parent table.
2. This type of database cannot support complex relationships, and there is also a problem
of redundancy, which can result in producing inaccurate information due to the
inconsistent recording of data at various sites.

3.3.3. Network Data Model

The Network model replaces the hierarchical tree with a graph thus allowing more
general connections among the nodes. The main difference of the network model from the
hierarchical model, is its ability to handle many to many (N:N) relations. In other words, it
allows a record to have more than one parent. Suppose an employee works for two departments.
The strict hierarchical arrangement is not possible here and the tree becomes a more generalized
graph - a network. The network model was evolved to specifically handle non-hierarchical
relationships. As shown below data can belong to more than one parent. Note that there are
lateral connections as well as top-down connections. A network structure thus allows 1:1 (one:
one), I: M (one: many), M: M (many: many) relationships among entities.

C1 rahat Thapar Campus patiala

L1 10000

C2 Rubi tagore Nagar jallandhar

L2 15000
C3 Chahat Dharampura Qadaran (' m
Se——

L3 25000

C4 Pooja GNDU Amritsar L4 35000

A

Network Model Of Customer Loan Databse

Figure 10: - Example of Network Model

In network database terminology, a relationship is a set. Each set is made up of at least
two types of records: an owner record (equivalent to parent in the hierarchical model) and a
member record (similar to the child record in the hierarchical model).

The database of Customer-Loan, which we discussed earlier for hierarchical model, is
now represented for Network model as shown.

41

http://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms

In can easily depict that now the information about the joint loan L1 appears single time,
but in case of hierarchical model it appears for two times. Thus, it reduces the redundancy and is
better as compared to hierarchical model.

The network model has the following major features:

1. It can represent redundancy in data more efficiently than that in the hierarchical model.

2. There can be more than one path from a previous node to successor node/s.

3. The operations of the network model are maintained by indexing structure of linked list
(circular) where a program maintains a current position and navigates from one record to
another by following the relationships in which the record participates.

4. Records can also be located by supplying key values.

Advantages

1. Fast data access.

2. It also allows users to create queries that are more complex than those they created using
a hierarchical database. So, a variety of queries can be run over this model.

Disadvantages

1. A user must be very familiar with the structure of the database to work through the set
structures.

2. Updating inside this database is a tedious task. One cannot change a set structure without
affecting the application programs that use this structure to navigate through the data. If
you change a set structure, you must also modify all references made from within the
application program to that structure.

3.3.4. Object / Relational Model
An Object relational model is a combination of a Object oriented database model and a

Relational database model. So, it supports objects, classes, inheritance etc. just like Object
Oriented models and has support for data types, tabular structures etc. like Relational data
model.

One of the major goals of Object relational data model is to close the gap between
relational databases and the object oriented practices frequently used in many programming
languages such as C++, C#, Java etc.

History of Object Relational Data Model

Both Relational data models and Object oriented data models are very useful. But it was
felt that they both were lacking in some characteristics and so work was started to build a model
that was a combination of them both. Hence, Object relational data model was created as a result
of research that was carried out in the 1990’s.

Advantages of Object Relational model
The advantages of the Object Relational model are:
Inheritance

42

http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

The Object Relational data model allows its users to inherit objects, tables etc. so that
they can extend their functionality. Inherited objects contain new attributes as well as the
attributes that were inherited.

Complex Data Types

Complex data types can be formed using existing data types. This is useful in Object
relational data model as complex data types allow better manipulation of the data.
Extensibility

The functionality of the system can be extended in Object relational data model. This can
be achieved using complex data types as well as advanced concepts of object oriented model
such as inheritance.

Disadvantages of Object Relational model

The object relational data model can get quite complicated and difficult to handle at
times as it is a combination of the Object oriented data model and Relational data model and
utilizes the functionalities of both of them.

3.3.5. Object-Oriented Model
Object oriented data model is based upon real world situations. These situations are represented
as objects, with different attributes. These entire objects have multiple relationships between
them.
Elements of Object oriented data model
Objects
The real world entities and situations are represented as objects in the Object oriented
database model.
Attributes and Method
Every object has certain characteristics. These are represented using Attributes. The
behaviour of the objects is represented using Methods.
Class
Similar attributes and methods are grouped together using a class. An object can be called as an
instance of the class.
Inheritance
A new class can be derived from the original class. The derived class contains attributes
and methods of the original class as well as its own.
The Components of the Object Oriented Data Model
> An object is an abstraction of a real-world entity. In general terms, an object may be
considered equivalent to an ER model’s entity. More precisely, an object represents only
one occurrence of an entity. (The object’s semantic content is defined through several of
the items in this list.)
» Attributes describe the properties of an object. For example, a PERSON object includes
the attributes Name, Social Security Number, and Date of Birth.

43

» Objects that share similar characteristics are grouped in classes. A class is a collection of
similar objects with shared structure (attributes) and behavior (methods). In a general
sense, a class resembles the ER model’s entity set. However, a class is different from an
entity set in that it contains a set of procedures known as methods. A class’s method
represents a real-world action such as finding a selected PERSON’s name, changing a
PERSON’s name, or printing a PERSON’s address. In other words, methods are the
equivalent of procedures in traditional programming languages. In OO terms, methods
define an object’s behavior.
» Classes are organized in a class hierarchy. The class hierarchy resembles an upside-down
tree in which each class has only one parent. For example, the CUSTOMER class and the
EMPLOYEE class share a parent PERSON class. (Note the similarity to the hierarchical
data model in this respect.)
> Inheritance is the ability of an object within the class hierarchy to inherit the attributes
and methods of the classes above it. For example, two classes, CUSTOMER and
EMPLOYEE, can be created as subclasses from the class PERSON. In this case,
CUSTOMER and EMPLOYEE will inherit all attributes and methods from PERSON.
Advantages of Object Oriented Data Model

1. Add semantic content

2. Visual presentation includes semantic content

3. Database integrity

4. Both structural and data independence
Disadvantages of Object Oriented Data Model

1. Lack of OODM standards

2. Complex navigational data access

3. Steep learning curve

4. High system overhead slows transactions

3.3.6. Entity-Relationship Model

Entity Relationship Modeling (ER Modeling) is a graphical approach to database design.
It uses Entity/Relationship to represent real world objects.

An Entity is a thing or object in real world that is distinguishable from surrounding
environment. For example each employee of an organization is a separate entity. Following are
some of major characteristics of entities.

e An entity has a set of properties.
« Entity properties can have values.

The ER model defines the conceptual view of a database. It works around real-world
entities and the associations among them. At view level, the ER model is considered a good
option for designing databases.

44

Entity

An entity can be a real-world object, either animate or inanimate, that can be easily
identifiable. For example, in a school database, students, teachers, classes, and courses offered
can be considered as entities. All these entities have some attributes or properties that give them
their identity.

An entity set is a collection of similar types of entities. An entity set may contain entities
with attribute sharing similar values. For example, a Students set may contain all the students of
a school; likewise a Teachers set may contain all the teachers of a school from all faculties.
Entity sets need not be disjoint.

Attributes

Entities are represented by means of their properties, called attributes. All attributes have
values. For example, a student entity may have name, class, and age as attributes.

There exists a domain or range of values that can be assigned to attributes. For example,
a student's name cannot be a numeric value. It has to be alphabetic. A student's age cannot be
negative, etc.

Types of Attributes
> Simple attribute — Simple attributes are atomic values, which cannot be divided further..
> Composite attribute — Composite attributes are made of more than one simple attribute..
> Derived attribute — Derived attributes are the attributes that do not exist in the physical
database, but their values are derived from other attributes present in the database..
> Multi-value attribute — Multi-value attributes may contain more than one values.
These attribute types can come together in a way like —
« simple single-valued attributes
e simple multi-valued attributes
e composite single-valued attributes
o composite multi-valued attributes

3.3.6.1. Modeling using E-R Diagrams

Entity relationship diagram displays the relationships of entity set stored in a database. In
other words, we can say that ER diagrams help you to explain the logical structure of databases.
At first look, an ER diagram looks very similar to the flowchart. However, ER Diagram includes
many specialized symbols, and its meanings make this model unique.
Facts about ER Diagram Model:

> ER model allows you to draw Database Design

It is an easy to use graphical tool for modeling data
Widely used in Database Design
It is a GUI representation of the logical structure of a Database
It helps you to identifies the entities which exist in a system and the relationships
between those entities

YV V V VY

45

Why use ER Diagrams?
Here, are prime reasons for using the ER Diagram
> Helps you to define terms related to entity relationship modeling
> Provide a preview of how all your tables should connect, what fields are going to be on
each table
> Helps to describe entities, attributes, relationships
» ER diagrams are translatable into relational tables which allows you to build databases
quickly
» ER diagrams can be used by database designers as a blueprint for implementing data in
specific software applications
» The database designer gains a better understanding of the information to be contained in
the database with the help of ERP diagram
» ERD is allowed you to communicate with the logical structure of the database to users
Components of the ER Diagram
This model is based on three basic concepts:
> Entities
> Attributes
> Relationships
An entity can be place, person, object, event or a concept, which stores data in the database.
The characteristics of entities are must have an attribute, and a unique key. Every entity is made
up of some "attributes' which represent that entity.
Relationship is nothing but an association among two or more entities. E.g., Tom works in
the Chemistry department.
It is a single-valued property of either an entity-type or a relationship-type. For example, a
lecture might have attributes: time, date, duration, place, etc. An attribute is represented by an
Ellipse

3.3.6.2. Notation used in E-R Model
There is no standard for representing data objects in ER diagrams. Each modeling
methodology uses its own notation.

All notational styles represent entities as rectangular boxes and relationships as lines
connecting boxes. Each style uses a special set of symbols to represent the cardinality of
connection. The symbols used for the basic ER constructs are:

> Entities are represented by labeled rectangles. The label is the name of the entity. Entity

names should be singular nouns.

» Attributes are represented by Ellipses.

» A solid line connecting two entities represents relationships. The name of the relationship

is written above the line. Relationship names should be verbs and diamonds sign is used
to represent relationship sets.

46

» Attributes, when included, are listed inside the entity rectangle. Attributes, which are
identifiers, are underlined. Attribute names should be singular nouns.

» Multi-valued attributes are represented by double ellipses.

> Directed line is used to indicate one occurrence and undirected line is used to indicate
many occurrences in a relation.

The symbols used to design an ER diagram are shown.

SYMBOL MEANING

Entity Type

Weak Entity Type

Relationship Type

Identifying Relationship Type

AT -

'
—u Attribute

Figure 11: - Symbol used for ER Diagram

3.3.7. Relationships and relationship Types
A relationship, in the context of databases, is a situation that exists between two relational
database tables when one table has a foreign key that references the primary key of the other
table. Relationships allow relational databases to split and store data in different tables, while
linking disparate data items.
There are 3 types of relationships in relational database design. They are:
> One-to-One
> One-to-Many (or Many-to-One)
> Many-to-Many
One-to-One Relationships
A pair of tables bears a one-to-one relationship when a single record in the first table is
related to only one record in the second table, and a single record in the second table is related
to only one record in the first table.

47

https://database.guide/what-is-a-relationship/

One-to-Many Relationships

A one-to-many relationship exists between a pair of tables when a single record in the
first table can be related to one or more records in the second table, but a single record in the
second table can be related to only one record in the first table.
Many-to-Many Relationships

A pair of tables bears a many-to-many relationship when a single record in the first table
can be related to one or more records in the second table and a single record in the second table
can be related to one or more records in the first table.

3.3.8. Associative database Model

The associative model of data is a data model for database systems. Other data models,
such as the relational model and the object data model, are record-based. These models involve
encompassing attributes about a thing, such as a car, in a record structure. Such attributes might
be registration, colour, make, model, etc. In the associative model, everything which has
“discrete independent existence” is modeled as an entity, and relationships between them are
modeled as associations.

Associative model has a division property; this divides the real world things about which
data is to be recorded in two sorts i.e. between entities and associations. Thus, this model does
the division for dividing the real world data to the entities and associations.

The Associative data model is a model for databases unlike any of those we spoke of in
prior articles. Unlike the relational model, which is record based and deals with entities and
attributes, this model works with entities that have a discreet independent existence, and their
relationships are modeled as associations.

The Associative model was bases on a subject-verb-object syntax with bold parallels in
sentences built from English and other languages.

The Associative database had two structures, there are a set of items and a set of links
that are used to connected them together. With the item structure the entries must contain a
unique indication, a type, and a name. Entries in the links structure must also have a unique
indicator along with indicators for the related source, subject, object, and verb.

How the Associative Data is Model different?

The Associative model structure is efficient with the storage room fore there is no need to
put aside existing space for the data that is not yet available. This differs from the relational
model structure. With the relational model the minimum of a single null byte is stored for
missing data in any given row. Also some relational databases set aside the maximum room for a
specified column in each row.

The Associative database creates storage of custom data for each user, or other needs
clear cut and economical when considering maintenance or network resources. When different
data needs to be stored the Associative model is able to manage the task more effectively then
the relational model.

48

https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Relational_model

With the Associative model there are entities and associations. The entity is identified as
discrete and has an independent existence, where as the association depends on other things.

The Associative model is designed to store metadata in the same structures where the
data itself is stored. This metadata describes the structure of the database and the how different
kinds of data can interconnect. Simple data structures need more to transport a database
competent of storing the varying of data that a modernized business requires along with the
protection and managements that is important for internet implementation.

The Associative model is built from chapters and the user’s view the content of the
database is controlled by their profile. The profile is a list of chapters. When some links between
items in the chapters inside as well as outside of a specific profile exist, those links will not be
visible to the user.

3.4. LET US SUM UP

In this unit, you have learnt about the various data model and types of data used in
database system development and implementation. This knowledge would make you understand
the data models used in database management system such as network model. Hierarchical
model, object oriented model, object relational model and relationship of data. Thus, the data
models and implementation unit would have brought you to closer to know the concept of data
models to represent the data database management system.

3.5. UNIT — END QUESTIONS

1. Identify the various data models used in DBMS.
2. Analyze the use of ER Model in Database design.

3.6. ANSWER TO CHECK YOUR PROGRESS

1. Data modeling is the process of creating a data model for the data to be stored in a Database.
The relational model represents the database as a collection of relations. A relation is nothing
but a table of values. Every row in the table represents a collection of related data values.
These rows in the table denote a real-world entity or relationship. A hierarchical model
represents the data in a tree-like structure in which there is a single parent for each record.
The Network model replaces the hierarchical tree with a graph thus allowing more general

49

connections among the nodes. An Object relational model is a combination of a Object
oriented database model and a Relational database model. Object oriented data model is
based upon real world situations. These situations are represented as objects, with different
attributes.

Entity Relationship Modeling (ER Modeling) is a graphical approach to database design. It
uses Entity/Relationship to represent real world objects. An entity can be a real-world object,
either animate or inanimate, that can be easily identifiable. An entity set is a collection of
similar types of entities. An entity set may contain entities with attribute sharing similar
values. Entities are represented by means of their properties, called attributes. All attributes
have values. Entity relationship diagram displays the relationships of entity set stored in a
database. All notational styles represent entities as rectangular boxes and relationships as
lines connecting boxes. Each style uses a special set of symbols to represent the cardinality of
connection. A relationship, in the context of databases, is a situation that exists between two
relational database tables when one table has a foreign key that references the primary key of
the other table.

50

UNIT IV — FILE ORGANIZATION AND CONVENTIONAL
DBMS

Structure

UNIT IV — FILE ORGANIZATION FOR CONVENTIONAL DBMS
4.1. Introduction
4.2. Objective
4.3. Storage Devices and its Characteristics
4.3.1. Magnetic Disks
4.3.2. Physical Characteristics of Disks
4.3.3. Performance Measures of Disks
4.3.4. Optimization of Disk-Block Access
4.4. File Organization
4.4.1. Fixed-Length Records
4.4.2. Variable-Length Records
4.4.3. Organization of records in files
4.4.4. Sequential file Organization
4.4.5. Indexed Sequential Access Method (ISAM)
4.4.6. Virtual Storage Access Method (VSAM)
4.5. Let Us Sum Up
4.6. Unit — End Exercises
4.7. Answer to Check Your Progress

4.1. INTRODUCTION

In this lesson you will be aware with the various storage devices and its characteristics
used for database storage and file organisation mechanism of DBMS. These device
characteristics and file mechanism include the magnetic disk and its performances and various
types of file organisation used in various devices.

4.2. OBJECTIVES

After going through this lesson you would be in a positions to

51

» Storage devices and its characteristics.
> Recognize the performances of storage devices.
> Define files, file organisations and representation.

4.3. STORAGE DEVICES AND CHARACTERISTICS

Databases are stored in file formats, which contain records. At physical level, the actual

data is stored in electromagnetic format on some device. These storage devices can be broadly
categorized into three types —

Primary Memory R
= o
g :
& Secondary M 7]
) ry Memory @
8 =)
é- L J I

Tertiary Memory

Figure 12: - Storage Devices

e Primary Storage — The memory storage that is directly accessible to the CPU comes
under this category. CPU's internal memory (registers), fast memory (cache), and main
memory (RAM) are directly accessible to the CPU, as they are all placed on the
motherboard or CPU chipset. This storage is typically very small, ultra-fast, and volatile.
Primary storage requires continuous power supply in order to maintain its state. In case
of a power failure, all its data is lost.

e Secondary Storage — Secondary storage devices are used to store data for future use or
as backup. Secondary storage includes memory devices that are not a part of the CPU
chipset or motherboard, for example, magnetic disks, optical disks (DVD, CD, etc.),
hard disks, flash drives, and magnetic tapes.

o Tertiary Storage — Tertiary storage is used to store huge volumes of data. Since such
storage devices are external to the computer system, they are the slowest in speed. These
storage devices are mostly used to take the back up of an entire system. Optical disks
and magnetic tapes are widely used as tertiary storage.

52

Memory Hierarchy

A computer system has a well-defined hierarchy of memory. A CPU has direct access to
it main memory as well as its inbuilt registers. The access time of the main memory is
obviously less than the CPU speed. To minimize this speed mismatch, cache memory is
introduced. Cache memory provides the fastest access time and it contains data that is most
frequently accessed by the CPU.

The memory with the fastest access is the costliest one. Larger storage devices offer slow
speed and they are less expensive, however they can store huge volumes of data as compared to
CPU registers or cache memory.

4.3.1. Magnetic Disks
A magnetic disk is a storage device that uses a magnetization process to read, write,
rewrite and access data. It is covered with a magnetic coating and stores data in the form of

tracks, spots and sectors. Hard disks, zip disks and floppy disks are common examples
of magnetic disks.

track t spindle
<
S SRS
N>

-4
| I «— arm assembly
sector s | I

%

9

=4

|

|

| s
cylinder ¢ —! | read-write

|

|

U

N

—

‘ head

|
<= w\

'..--‘&

~JF—

rotation

Figure 13: - Magnetic Disk

4.3.2. Physical Characteristics of Disks

A magnetic disk primarily consists of a rotating magnetic surface and a mechanical arm
that moves over it. That mechanical arm is used to read from and write data to the disk. The data
on a magnetic disk is read and written using a magnetization process. Data is organized on the
disk in the form of tracks and sectors, where tracks are the circular divisions of the disk. Tracks
are further divided into sectors that contain blocks of data. All read & write operations on the
magnetic disk are performed on the sectors.

platter i

53

Magnetic disks have traditionally been used as primary storage in computers. But now

with the advent of solid-state drives (SSDs), Flash drives (Pendrive), External hard
disks..Magnetic disks are no longer considered the only option, but are still commonly used.

A. Magnetic Read and Write Mechanisms. Write head is has coils of wire around a gapped
rectangular doughnut.

Read head uses a partially shielded magneto resistive sensor made of ferromagnetic

materials.
B. Data Organization and Formatting.

1.

2.
3.

4.

Tracks = concentric rings on the platter, each the width of a head, and separated by the
intertrack gap.

Sectors = sections of tracks (512 bytes of data, recently 4K) separated by intersector gaps.
Tracks on the outside of the platter have a higher angular velocity than tracks closer to
the center.

a. Constant angular velocity layout has the same number of sectors on each track, so
outer ones are longer than inner ones. Advantage: easy to find sectors.
Disadvantage: Outer sectors have lower density than possible.

b. Multiple zoned layout has the number of sectors based on the circumference of
the tracks. Advantage: makes full use of the density possible, and thus more
storage capacity.

Formatting creates physical sectors (600 bytes) that also include IDs, CRC, and gaps to
help with synching.

C. Physical Characteristics

1.

okrwn

Heads: fixed head (one per track, obsolete), or moveable-head (one per surface) mounted
on an arm.

Non-removable disk (hard disk) or removable disk (floppy).

Single platter, or multiple (2 -10) platters on the same spindle.

Single sided, or double sided (usually).

Head Mechanisms: 1) contact, e.g. floppy; 2) fixed gap (traditional); and 3) aerodynamic
gap (Winchester) relies on foil head riding the air current produced by the spinning
platters to keep from touching them.

4.3.3. Performance Measures of Disks

1.

2.

3.

Seek time = average time it takes to position a head over the correct track. 4-13ms. Zero
on fixed head drives.

Rotational delay = average time it takes a sector to reach the head. 7200 RPM = 4ms,
10000 RPM =3 ms

Access time = seek time + rotational delay.

54

4. Transfer time = time to read or write one sector once it has reached the head, 100 -
300MB/s

4.3.4. Optimization of Disk-Block Access
Data is transferred between disk and main memory in units called blocks.

1.
2
3.
4. The lower levels of file system manager covert block addresses into the hardware-level

. A block is a contiguous sequence of bytes from a single track of one platter.

Block sizes range from 512 bytes to several thousand.

cylinder, surface, and sector number.
Access to data on disk is several orders of magnitude slower than is access to data in
main memory. Optimization techniques besides buffering of blocks in main memory.

@)

Scheduling: If several blocks from a cylinder need to be transferred, we may save
time by requesting them in the order in which they pass under the heads. A
commonly used disk-arm scheduling algorithm is the elevator algorithm.

File organization. Organize blocks on disk in a way that corresponds closely to
the manner that we expect data to be accessed. For example, store related
information on the same track, or physically close tracks, or adjacent cylinders in
order to minimize seek time. IBM mainframe OS's provide programmers fine
control on placement of files but increase programmer's burden.

UNIX or PC OSs hide disk organizations from users. Over time, a sequential file
may become fragmented. To reduce fragmentation, the system can make a back-
up copy of the data on disk and restore the entire disk. The restore operation
writes back the blocks of each file continuously (or nearly so). Some systems,
such as MS-DOS, have utilities that scan the disk and then move blocks to
decrease the fragmentation.

Nonvolatile writes buffers. Use nonvolatile RAM (such as battery-back-up RAM)
to speed up disk writes drastically (first write to nonvolatile RAM buffer and
inform OS that writes completed).

Log disk. Another approach to reducing write latency is to use a log disk, a disk
devoted to writing a sequential log. All access to the log disk is sequential,
essentially eliminating seek time, and several consecutive blocks can be written at
once, making writes to log disk several times faster than random writes.

4.4. FILE ORGANIZATION

A file is a collection of or log of records. Having stored the records in a file it is
necessary to access these records using either a primary or secondary key. The type and

55

frequency of access required determines the type of file organization to be used for a given set of
records. A File is organized logically as a sequence of records. These records are mapped onto
disk blocks. Files are provided as a basic construct in operating systems, representing logical
data models in terms of files. Although blocks are of a fixed size determined by the physical
properties of the disk and by the operating system, record sizes vary. In a relational database,
tuples of distinct relations are generally of different sizes.

One approach to mapping the database to files is to use several files and to store records
of only one fixed length in any given file. An alternative is to structure our files so that we can
accommodate multiple lengths for records; however, files of fixed length records are easier to
implement than are files of variable length records. Many of the techniques used for the former
can be applied to the variable length case.

Storing the files in certain order is called file organization. The main objective of file
organization is
> Optimal selection of records i.e.; records should be accessed as fast as possible.
> Any insert, update or delete transaction on records should be easy, quick and should not
harm other records.
> No duplicate records should be induced as a result of insert, update or delete
> Records should be stored efficiently so that cost of storage is minimal.

There are various methods of file organizations. These methods may be efficient for
certain types of access/selection meanwhile it will turn inefficient for other selections.

Various methods have been introduced to Organize files. These particular methods have
advantages and disadvantages on the basis of access or selection. Some types of File
Organizations are:

> Sequential File Organization.
Heap File Organization.
Hash File Organization.
B+ Tree File Organization.
Clustered File Organization.

VV V VY

4.4.1. Fixed-Length Records
As an example, let us consider a file of account records for our bank database .Each
record of this file is defined (in pseudo code) as:

type deposit = record
Account _number char (10);
Branch_name char (22);
Balance numeric (12, 2);
end

56

If we assume that each character occupies 1 byte and that numeric (12, 2) occupies 8
bytes, our account record is 40 bytes long. A simple approach is to use the first 40 bytes for the
first record, the next 40 bytes for the second record and so on.

However there are two main problems with this simple approach.

1. Itis difficult to delete a record from this structure. The space occupied by the record to be
deleted must be filled with some other record of the file, or we must have a way of
marking deleted records so that they can be ignored.

2. Unless the block size happens to be a multiple of 40(which is unlikely), some records will
cross block boundaries. That is, part of the record will be stored in one block and part in
another. It would thus require two block accesses to read or write such a record.

When a record is deleted, we could move the record that came after it into the space formerly
occupied by the deleted record, and so on, until every record following the deleted record has
been moved ahead. Such an approach requires moving a large number of records. It might be
easier simply to move the final record of the file into the space occupied by the deleted record.

It is undesirable to move records to occupy the space freed by the deleted record, since
doing so requires additional block accesses. Since insertions tend to be more frequent than
deletions, it is acceptable to leave open the space occupied by the deleted record, and to wait for
a subsequent insertion before reusing the space. A simple marker on the deleted record is not
sufficient, since it is hard to find this available space when an insertion is being done. Thus we
need to introduce an additional structure.

At the beginning of the file, we allocate a certain number of bytes as a file header. The
header will contain a variety of information about the file.

For now, all we need to store there is the address of the first record whose contents are
deleted. We use this first record to store the address of the second available record, and so on.
Intuitively we can think of these stored addresses as pointers, since they point to the location of a
record. The deleted records thus form a linked list, which is often referred to as a free list.

On insertion of a new record, we use the record pointed to by the header. We change the
header pointer to point to the next available record. If no space is available, we add the new
record to the end of the file.

Insertion and deletion for files of fixed length records are simple to implement, because
the space made available by a deleted record is exactly the space needed to insert a record. If we
allow records of variable length in a file, this match no longer holds. An inserted record may not
fit in the space left free by a deleted record, or it may fill only part of that space.

4.4.2. Variable-Length Records
Variable length records arise in the database systems in several ways.
» Storage of multiple record types in a file
» Record types that allow variable lengths for one or more fields.
> Record types that allow repeating fields, such as arrays or multisets.

57

Different techniques for implementing variable length records exist.

The slotted page structure is commonly used for organizing records within a block. There

is a header at the beginning of each block, containing the following information.
1. The number of record entries in the header.
2. The end of free space in the block.
3. An array whose entries contain the location and size of each record.

The actual records are allocated contiguously in the block, starting from the end of the
block. The free space in the block is contiguous, between the final entry in the header array, and
the first record. If a record is inserted, space is allocated for it at the end of free space, and an
entry containing its size and location is added to the header.

If a record is deleted, the space that it occupies is freed, and its entry is set to deleted (its
size is set to -1, for example). Further the records in the block before the deleted records are
moved, so that the free space created by the deletion gets occupied, and all free space is again
between the final entry in the header array and the first record. The end of free space pointer in
the header is appropriately updated as well. Records can be grown or shrunk by similar
techniques, as long as there is space in the block. The cost of moving the records is not too high,
since the size of a block is limited: a typical value is 4 kilobytes.

The slotted page structure requires that there be no pointers that point directly to records.
Instead, pointers must point to the entry in the header that contains the actual location of the
record. This level of indirection allows records to be moved to prevent fragmentation of space
inside a block, while supporting indirect pointers to the record.

Databases often store data that can be much larger than a disk block .For instance, an
image or an audio recording may be multiple megabytes in size, while a video object may be
multiple gigabytes in size. Recall that SQL supports the types blob and clob, which store binary
and character large objects.

Most relational databases restrict the size of a record to be no larger than the size of a
block, to simplify buffer management and free space management. Large objects are often stored
in a special file (or collection of files) instead of being stored with the other (short) attributes of
records in which they occur. Large objects are often represented using B+ - tree file
organizations.

4.4.3. Organization of records in files
So far, we have studied how records are represented in a file structure. A relation is a set
of records. Given a set of records; the next question is how to organize them in a file. Several of
the possible ways of organizing records in files are:
» Heap File Organization: - Any record can be placed anywhere in the file where there is
space for a record. There is no ordering of records. Typically, there is a single file for
each relation.

58

» Sequential File: - Organization Records are stored in sequential order, according to the
value of a “search key” of each record.

» Hashing File Organization: - A hash function is computed on some other attribute of
each record. The result of the hash function specifies in which block of the file the record
should be placed.

4.4.4. Sequential file Organization

In a sequential file, records are maintained in the logical sequence of their primary key
values. The processing of a sequential file is conceptually simple but inefficient for random
access. A sequential file could be stored on a sequential storage device such as a magnetic tape.

Search for a given record in a sequential file requires, an average access to half the
records in the file. A binary or logarithmic search technique may also be used to search for a
record.

Updating usually requires the creation of a new file. To maintain file sequence records
are copied to the point where amendment is required. The changes are then made and copied to
the new file. Following this, the remaining records in the original file are copied to the new file,
thus creating an automatic back-up copy.

The basic advantage offered by a sequential file is the ease of access to the next record,
the simplicity of the organization and the absence of auxiliary data structures. To reduce the cost
per update, all updates are batched, sorted in order of sequential file and the file is updated in
single pass, such a file containing updates to be made to sequential file is sometimes referred to
as ‘Transaction File’

Thus a sequential file is designed for efficient processing of records in sorted order based
on some search key. A search key is any attribute or set of attributes; it need not be the primary
key, or even a super key. To permit fast retrieval of records in search key order, we chain
together records by pointers. The pointer in each record points to the next record in the search
order. Furthermore, to minimize the number of block accesses in sequential file processing, we
store records physically in search key order, or as close to search key order as possible.

The sequential file organization allows records to be read in sorted order, that can be
useful for display purposes as well as for certain query processing algorithms.

It is difficult, however to maintain physical sequential order as records are inserted and
deleted, since it is costly to move many records as a result of a single insertion or deletion. We
can manage deletion by using pointer chains, as we saw previously. For insertion, we apply the
following rules.

1. Locate the record in the file that comes before the record to be inserted in search key
order.

2. If there is a free record (that is, space left after a deletion) within the same block as this
record, insert the new record there. Otherwise, insert the new record in an overflow

59

block. In either case, adjust the pointers so as to chain together the records in search key
order.

4.4.5. Indexed Sequential Access Method (ISAM)

The retrieval of a record from a sequential file, on average, requires access to half the
records in the file, making such enquiries not only inefficient but very time consuming for large
file. To improve the query response time of a sequential file, a type of indexing technique can be
added.

An index is a set of pairs. Indexing associates a set of objects to a set of orderable
quantities, which are usually smaller in number or their properties, provide a mechanism for
faster search. The purpose of indexing is to expedite the search process.

‘Indexes created from a sequential (or sorted) set of primary keys are referred to as index
sequential’. Although the indices and the data blocks are held together physically, we distinguish
between them logically. We shall use the term index file to describe the indexes and data file to
refer to the data records. The index is usually small enough to be read into the processor
memory.

A sequential (or sorted on primary keys) file that is indexed is called an index sequential
file. The index provides for random access to records, while the sequential nature of the file
provides easy access to the subsequent records as well as sequential processing. An additional
feature of this file system is the overflow area. This feature provides additional space for record
addition without necessitating the creation of a new file.

In index sequential organization, it is the usual practice to have a hierarchy of indexes
with the lowest level index pointing to the records while the higher level ones point to the index
below them.

Updates to an index sequential file may entail modifications to the index in addition to
the file The index file can be simplified or its storage requirements reduced if only the address
part of the pair is held in the index. This however necessitates holding the address of every
possible key in the key range, including addresses of records not in file. The addresses of
nonexistent records can be set to an impossibly high or low value to indicate their absence from
the file. If the number of such missing records in the range of stored key values is small, the
saving obtained by not storing the key is considerable.

4.4.6. Virtual Storage Access Method (VSAM)

Virtual Storage Access Method (VSAM) is high performance access method and data set
organization, which organizes and maintains data via a catalog structure. It utilizes virtual
storage concept and can protect datasets at various levels by giving passwords. VSAM can be
used in COBOL programs like physical sequential files. VSAM are the logical datasets for
storing records. Files can be read sequentially and randomly in VSAM. It is an improved way of

60

storing data which overcomes some of the limitations of conventional file systems like
Sequential Files.
Characteristics of VSAM
Following are the characteristics of VSAM —

> VSAM protects data against unauthorized access by using passwords.
VSAM provides fast access to data sets.
VSAM has options for optimizing performance.
VSAM allows data set sharing in both batch and online environment.
VSAM are more structured and organized in storing data.

> Free space is reused automatically in VSAM files.
Limitations of VSAM

The only limitation of VSAM is that it cannot be stored on TAPE volume. It is always
stored on DASD space. It requires a number of cylinders to store the data which is not cost-
effective.

VSAM consists of following components —
> VSAM Cluster.
> Control Area.
> Control Interval.

VSAM Cluster

VSAM are the logical datasets for storing records and are known as clusters. A cluster is
an association of the index, sequence set and data portions of the dataset. The space occupied by
a VSAM cluster is divided in contiguous areas called Control Intervals. We will discuss about
control intervals later in this module.

There are two main components in a VSAM cluster —
> Index Component contains the index part. Index records are present in Index component.
Using index component VSAM is able to retrieve records from the data component.
> Data Component contains the data part. Actual data records are present in Data
component.
Control Interval

Control Intervals (CI) in VSAM are equivalent to blocks for non-VSAM data sets. In
non-VSAM methods, the unit of data is defined by the block. VSAM works with logical data
area which is known as Control Intervals.

Control Intervals are the smallest unit of transfer between a disk and the operating
system. Whenever a record is retrieved directly from the storage, the entire CI containing the
record is read into VSAM Input-Output buffer. The desired record is then transferred to work
area from VSAM buffer.

Control Interval consists of —
> Logical Records.
> Control information fields.

YV V.V V

61

> Free Space.
When a VSAM dataset is loaded, control intervals are created. The default Control Interval size
is 4K bytes and it can extend up to 32K bytes.
Control Area
A Control Area (CA) is formed by putting together two or more Control Intervals. A
VSAM dataset is composed of one or more Control Areas. The size of VSAM is always a
multiple of its Control Area. VSAM files are extended in units of Control Areas.

4.5. LET US SUM UP

In this unit, you have learnt about the storage devices and various file organisation
mechanisms implemented in database management system. This knowledge would make you
understand the magnetic disk usage, characteristics and performance of device and various file
organisations like sequential file, hash file, heap file and organisation and clustered file also.
Thus, the file organisations for conventional DBMS unit would have brought you to closer to
know the concept of file organisation to represent the data in the database management system.

4.6. UNIT — END QUESTIONS

1. Examine the use of magnetic disk and its characteristics and performance.
2. Write about the various file organisation mechanisms in detail.

4.7. ANSWER TO CHECK YOUR PROGRESS

1. Databases are stored in file formats, which contain records. At physical level, the actual data
is stored in electromagnetic format on some device. These storage devices can be broadly
categorized into three types — Primary Storage, Secondary Storage and Tertiary Storage. A
magnetic disk is a storage device that uses a magnetization process to read, write, rewrite and
access data. It is covered with a magnetic coating and stores data in the form of tracks, spots
and sectors. Hard disks, zip disks and floppy disks are common examples of magnetic disks.
A magnetic disk primarily consists of a rotating magnetic surface and a mechanical arm that
moves over it. That mechanical arm is used to read from and write data to the disk. The data
on a magnetic disk is read and written using a magnetization process. Data is organized on
the disk in the form of tracks and sectors, where tracks are the circular divisions of the disk.

62

Tracks are further divided into sectors that contain blocks of data. All read & write
operations on the magnetic disk are performed on the sectors.

. Afile is a collection of or log of records. Having stored the records in a file it is necessary to
access these record